自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 收藏
  • 关注

转载 关于0x80000000为什么等于-2147483648和负数在内存上储存的问题

https://blog.csdn.net/youyou362/article/details/72667951/转一下

2019-05-16 15:23:52 548

转载 mixchannel

CV_EXPORTS void mixChannels(const Mat* src, size_t nsrcs, Mat* dst, size_t ndsts, const int* fromTo, size_t npairs);Mat rgba( 3, 4, CV_8UC4, Scalar(1,2,3,4) );Mat...

2019-04-11 13:32:31 556

转载 opencv配置问题

vs2017 -配置 opencv344感谢大佬的博客:https://blog.csdn.net/qq_41175905/article/details/80560429跪谢

2019-02-27 16:07:12 234

原创 霍夫变换-测试

2018年10月25日15:22:48今天,通过测试霍夫圆变换参数。即CV_EXPORTS_W void HoughCircles( InputArray image, OutputArray circles,                               int method, double dp, double minDist,                    ...

2018-10-25 15:40:25 218

原创 多层感知器之问题解决

根据阅读《神经网络与机器学习》了解并解决部分问题,通过博客记录。什么是多层感知器?根据对Rosenblatt感知器,最小均方算法的学习,多层感知器是一种在以上基础的上的一种推广。其中关键就是包含了一个或多个隐藏层的感知器。为什么要使用多层感知器而不使用Rosenblatt感知器呢?对于Rosenblatt感知器来说,它只能处理线性可分的双半月问题,对于线性不可分问题来讲,需要多层感知器这样的结构才...

2018-07-01 11:20:25 2769

原创 最小均方算法

引用《神经网络与机器学习》一文中的一句话,“Rosenblatt感知器是解决线性可分模式分类问题的第一个学习算法,而最小均方算法(LMS)是第一个解决如预测和信道均等化等问题的线性自适应滤波算法。”首先介绍LMS算法的优点:1、算法编程简单;2、计算复杂度是线性的故计算高效(相比于非线性);3、对于外部扰动来说,它是一个独立模型,它是鲁棒的。缺点:1、LMS算法的收敛速度慢,需要输入空间维数的10...

2018-06-06 15:28:56 2954

原创 线性回归函数对给定随机变量集合建模

回归模型分为线性回归模型和非线性回归模型。这里讨论线性回归模型,这一模型参数化之后为:d=w转置x+e其中d称为期望响应,x称为回归量,w称为参数向量,e称为期望误差,w的维数与回归量x的共同维数称为模型阶。注:线性回归模型如图p42对线性回归参数向量选择的过程进行量化,进而得到4个密度函数。1、观测密度,给定参数向量w,由回归量x对环境响应d的“观测”。2、先验,先验于环境观测量的参数向量w的信...

2018-06-02 22:13:15 372

原创 Rosenblatt感知器

感知器作为第一个算法上完整描述的神经网络,有很重要的学习必要。感知器是用于线性可分模式分类的最简单的神经网络模型。Rosenblatt证明了当用来训练感知器的模式来自两个线性可分的类时,感知器的算法是收敛的,并且决策面是位于两类之间的超平面。对于基本感知器的权值向量自适应算法可以由以下表示:1、假设某个成员x的第n次迭代,x(n)的权值为w(n)并且该权值能正确分类那么下面的规则就不做更改w(n+...

2018-06-01 12:24:06 306

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除