2024 nike/snkrs wtoken算法 0003版本 纯算 设备注册 抽签/加车 AliTigerTally

通过分析发现,具体加密在这里libtiger_tally.so里

按照市面传统方法,对于这种级别的vmp混淆so,一般会选择unidbg模拟执行或者hook真机设备来解决但这种方法有个缺陷就是设备信息无法大量生成 造成无法大量并发的结果

这里我们团队为了过风控 已经使用纯算完成了 设备生成 设备注册 签名计算 这样每次获取到的wtoken都是全新的不会有被风控的问题
经过测试能在准点高风控时候入签 加购  并使用加车请求测试,完美通过。

有需要交流的同学可以私信合作

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
好的,下面是一个基于决策树算法的鞋子销售预测的Python实现。 首先,我们需要准备数据集。假设我们有以下数据集,包含了鞋子的品牌、价格和销售情况: | 品牌 | 价格 | 是否售出 | | ---- | ---- | -------- | | Adidas | 100 | 是 | | Nike | 80 | 是 | | Adidas | 120 | 否 | | Puma | 90 | 是 | | Nike | 70 | 否 | | Puma | 110 | 否 | | Adidas | 130 | 否 | 接下来,我们可以使用Python中的scikit-learn库来构建和训练决策树模型。具体来说,我们需要导入DecisionTreeClassifier类,将数据集拆分为训练集和测试集,然后使用训练集来训练模型并使用测试集来评估模型的性能。 下面是完整的Python代码实现: ```python from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score # 准备数据集 X = [['Adidas', 100], ['Nike', 80], ['Adidas', 120], ['Puma', 90], ['Nike', 70], ['Puma', 110], ['Adidas', 130]] y = ['Yes', 'Yes', 'No', 'Yes', 'No', 'No', 'No'] # 将品牌转换为数字 X_dict = [] for i in range(len(X)): X_dict.append({'brand': X[i][0], 'price': X[i][1]}) brand_dict = {'Adidas': 0, 'Nike': 1, 'Puma': 2} for i in range(len(X_dict)): X_dict[i]['brand'] = brand_dict[X_dict[i]['brand']] # 拆分数据集为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X_dict, y, test_size=0.2, random_state=42) # 构建决策树模型 clf = DecisionTreeClassifier() clf.fit(X_train, y_train) # 使用测试集评估模型性能 y_pred = clf.predict(X_test) accuracy = accuracy_score(y_test, y_pred) print('Accuracy:', accuracy) ``` 运行以上代码,即可得到模型的准确率,用于对新的鞋子销售进行预测。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值