补码、原码、反码

在计算机用一个数的最高位存放符号, 0表示正数, 1表示负数,字节长度为8。

则-3在计算机中用1000 0011表示,由此可以推出8位二进制数的取值范围为[11111111,01111111]即就是[-127,127]。

 

反码:

  1. 正数的反码为本身
  2. 负数的反码为符号位不变,其余各位取反

补码:

  1. 正数的补码为其本身
  2. 负数的补码为反码+1

 

 

 

参考:https://www.cnblogs.com/goahead--linux/p/10904701.html

### 补码原码反码的概念 #### 原码 原码是最直观的表示方法,最高位作为符号位,0代表正数,1代表数。数值部分直接采用二进制表示法[^2]。 例如: - 正数 `+5` 的8位原码为 `00000101` - 数 `-5` 的8位原码为 `10000101` #### 反码 对于正数而言,其反码与其原码相同;而对于数,则是在保留符号位的前提下对其余各位取反得到反码[^1]。 举例来说: - 正数 `+5` 的8位反码仍为 `00000101` - 数 `-5` 的8位反码则变为 `11111010` 值得注意的是,在某些旧系统中确实存在使用反码的情况,但由于其实现复杂度较高以及处理零值时可能出现两个不同编码的问题(即正零和零),因此现代计算机普遍不再单独应用反码而转向更为高效的补码体系[^3]。 #### 补码 为了克服上述提到的反码存在的缺陷并简化硬件设计,引入了补码概念。具体地讲: - 对于正数,其补码同样等于自身的原码; - 对于数,先求得该数绝对值对应的二进制形式再按位取反最后加一即可获得最终结果。 继续以上述例子说明: - 正数 `+5` 的8位补码依旧是 `00000101` - 而对于 `-5` ,首先写出 `|−5|=5` 的8位二进制表达 `00000101` ,接着将其逐位置否变成 `11111010` 后再加上一位形成 `11111011` 即为其8位补码表示[^4]。 通过这种方式定义的数据表示方案不仅解决了同一个整型数据可能存在多种机器级描述这一潜在隐患,而且使得算术运算更加便捷高效,特别是在涉及减法规程转换成加法操作方面具有明显优势。 ```python def get_complement(value, bit_length=8): """获取给定十进制整数value在指定bit长度下的补码""" if value >= 0: return format(value, '0{}b'.format(bit_length)) else: abs_value = abs(value) binary_str = ''.join(['1' if b == '0' else '0' for b in bin(abs_value)[2:].zfill(bit_length)]) inverted_int = int(binary_str, 2) + 1 return format(inverted_int % (1 << bit_length), '0{}b'.format(bit_length)) print(get_complement(-5)) # 输出:11111011 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值