ACID
MySQL 事务主要用于处理操作量大,复杂度高的数据。比如说,在人员管理系统中,你删除一个人员,你既需要删除人员的基本资料,也要删除和该人员相关的信息,如信箱,文章等等,这样,这些数据库操作语句就构成一个事务!
- 在 MySQL 中只有使用了 Innodb 数据库引擎的数据库或表才支持事务。
- 事务处理可以用来维护数据库的完整性,保证成批的 SQL 语句要么全部执行,要么全部不执行。
- 事务用来管理 insert,update,delete 语句
一般来说,事务是必须满足4个条件(ACID)::原子性(Atomicity,或称不可分割性)、一致性(Consistency)、隔离性(Isolation,又称独立性)、持久性(Durability)
-
原子性:一个事务(transaction)中的所有操作,要么全部完成,要么全部不完成,不会结束在中间某个环节。事务在执行过程中发生错误,会被回滚(Rollback)到事务开始前的状态,就像这个事务从来没有执行过一样。
举例:从账户A转账100美元到账户B,原子性意味着如果从A转出成功后操作失败,整个操作必须回滚,操作不会停留在不一致的状态(钱已从A转出却未转入B)。 -
一致性:在事务开始之前和事务结束以后,数据库的完整性没有被破坏。这是说数据库事务不能破坏关系数据的完整性以及业务逻辑上的一致性。这表示写入的资料必须完全符合所有的预设规则,这包含资料的精确度、串联性以及后续数据库可以自发性地完成预定的工作。
一致性意味着如果违反了预定义的约束或规则,数据就不会被持久化。如果某个字段只接受整数就不会接受浮点数,除非四舍五入成整数。RDMB中一致性通常与唯一约束、数据类型验证和引用完整性相关。维护一致性的任务主要还是留给了应用程序。
举例:如A给B转账,不论转账的事务操作是否成功,其两者的存款总额不变(这是业务逻辑的一致性,至于数据库关系约束的完整性就更好理解了)。 -
隔离性:数据库允许多个并发事务同时对其数据进行读写和修改的能力,隔离性可以防止多个事务并发执行时由于交叉执行而导致数据的不一致。事务隔离分为不同级别,包括读未提交(Read uncommitted)、读提交(read committed)、可重复读(repeatable read)和串行化(Serializable)。
设置 | 描述 |
---|---|
Serializable(串行化) | 可避免脏读、不可重复读、虚读情况的发生。 |
Repeatable read(可重复读) | 可避免脏读、不可重复读情况的发生。 |
Read committed(读已提交) | 可避免脏读情况发生。 |
Read uncommitted(读未提交) | 最低级别,以上情况均无法保证。 |
几个相关概念:
-
脏读:指一个事务读取了另外一个事务未提交的数据。
-
不可重复读:在一个事务内读取表中的某一行数据,多次读取结果不同。(这个不一定是错误,只是某些场合不对)
-
虚读(幻读):是指在一个事务内读取到了别的事务插入的数据,导致前后读取数量总量不一致。(一般是行影响,如多了一行)
-
持久性:事务处理结束后,对数据的修改就是永久的,即便系统故障也不会丢失。
在 MySQL 命令行的默认设置下,事务都是自动提交的,即执行 SQL 语句后就会马上执行 COMMIT 操作。因此要显式地开启一个事务务须使用命令 BEGIN 或 START TRANSACTION,或者执行命令 SET AUTOCOMMIT=0,用来禁止使用当前会话的自动提交。
MYSQL 事务处理主要有两种方法:
-
用 BEGIN, ROLLBACK, COMMIT来实现
BEGIN 开始一个事务
ROLLBACK 事务回滚
COMMIT 事务确认 -
直接用 SET 来改变 MySQL 的自动提交模式:
SET AUTOCOMMIT=0 禁止自动提交
SET AUTOCOMMIT=1 开启自动提交
CAP
- 一致性(Consistency): 指在分布式系统中的所有数据备份,在同一时刻是否同样的值。(等同于所有节点访问同一份最新的数据副本)
- 可用性(Availability): 在集群中一部分节点故障后,集群整体是否还能响应客户端的读写请求。(只要收到用户的请求,服务器就必须给出回应。)
- 分区容忍性(Partition tolerance): 大多数分布式系统都分布在多个子网络。每个子网络就叫做一个区(partition)。分区容错的意思是,区间通信可能失败。比如,一台服务器放在中国,另一台服务器放在美国,这就是两个区,它们之间可能无法通信。一般来说,分区容错无法避免,因此可以认为 CAP 的 P 总是成立。CAP 定理告诉我们,剩下的 C 和 A 无法同时做到。
CAP原理认为,一个提供数据服务的存储系统无法同时满足一致性、可用性、分区容忍性三个条件。具体来说,数据一致性又分为如下几个:
- 数据强一致性:各个副本的数据在物理存储中总是一致的;数据更新操作结果和操作响应总是一致的,操作响应通知更新失败,那么数据一定没有被更新,而不是处于不确定的状态。
- 数据用户一致:即数据在物理存储中的各个副本的数据可能不一致,但终端用户访问时,通过纠错和校验机制,可以确定一个一致的且正确的数据返回给用户。
- 数据最终一致:物理存储中的各个副本数据可能不一致,而且终端用户访问到的数据也可能不一致,但是经过一段时间,系统通过自我恢复和修正,数据最终达到一致。
为了保证数据的高可用,通常会牺牲数据一致性。
【参考】
- https://www.runoob.com/mysql/mysql-transaction.html