给你两个按 非递减顺序 排列的整数数组 nums1 和 nums2,另有两个整数 m 和 n ,分别表示 nums1 和 nums2 中的元素数目。
请你 合并 nums2 到 nums1 中,使合并后的数组同样按 非递减顺序 排列。
注意:最终,合并后数组不应由函数返回,而是存储在数组 nums1 中。为了应对这种情况,nums1 的初始长度为 m + n,其中前 m 个元素表示应合并的元素,后 n 个元素为 0 ,应忽略。nums2 的长度为 n 。
示例 1:
输入:nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3
输出:[1,2,2,3,5,6]
解释:需要合并 [1,2,3] 和 [2,5,6] 。
合并结果是 [1,2,2,3,5,6] ,其中斜体加粗标注的为 nums1 中的元素。
示例 2:
输入:nums1 = [1], m = 1, nums2 = [], n = 0
输出:[1]
解释:需要合并 [1] 和 [] 。
合并结果是 [1] 。
示例 3:
输入:nums1 = [0], m = 0, nums2 = [1], n = 1
输出:[1]
解释:需要合并的数组是 [] 和 [1] 。
合并结果是 [1] 。
注意,因为 m = 0 ,所以 nums1 中没有元素。nums1 中仅存的 0 仅仅是为了确保合并结果可以顺利存放到 nums1 中。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/merge-sorted-array
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
优秀代码:
从后面开始找位置就不用辅助空间,倒序比较赋值
把两个指针分别放在两个数组的末尾,即 nums1 的 m − 1 位和 nums2 的 n − 1 位。每次将较大的那个数字复制到 nums1 的后边,然后向前移动一位。 因为我们也要定位 nums1 的末尾,所以我们还需要第三个指针,以便复制。 在以下的代码里,我们直接利用 m 和 n 当作两个数组的指针,再额外创立一个 p 指针,起始位置为 m +n−1。每次向前移动 m 或 n 的时候,也要向前移动 p。
时间复杂度:O(m+n)。
指针移动单调递减,最多移动 m+nm+n 次,因此时间复杂度为 O(m+n)O(m+n)。
空间复杂度:O(1)。
直接对数组 nums1 原地修改,不需要额外空间。
作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/merge-sorted-array/solution/he-bing-liang-ge-you-xu-shu-zu-by-leetco-rrb0/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
void merge(int* nums1, int nums1Size, int m, int* nums2, int nums2Size, int n){
//数组长度
//nums2Size与n不一样大小吗?
//m,n表示元素数目 不包括后面补上的0
/*
比较数组元素,相同则插入到后面
如何经过一次循环进行两条路线的比较
怎么插入?插入后后面的数据怎么办---->倒序<----逆向思维
非算法:把数组2替换掉数组1里的0,然后.sort()排序。
算法1:从后面开始找位置就不用辅助空间,倒序比较赋值
*/
int p = m-- + n-- -1;
//m--是先计算再减1 实际上p=m+n-1 然后m-1 n-1
while(m>=0&&n>=0){
nums1[p--]=nums1[m]>nums2[n]?nums1[m--]:nums2[n--];
//nums2[n]是哪个?前面n已经-1了
}
//如果 nums1 的数字已经复制完,不要忘记把 nums2 的数字继续复制;如果 nums2 的数字已经复制完,剩余 nums1 的数字不需要改变,因为它们已经被排好序。
while(n>=0){
nums1[p--]=nums2[n--];
}
}