LeetCode_88. 合并两个有序数组_逆向思维

给你两个按 非递减顺序 排列的整数数组 nums1 和 nums2,另有两个整数 m 和 n ,分别表示 nums1 和 nums2 中的元素数目。
请你 合并 nums2 到 nums1 中,使合并后的数组同样按 非递减顺序 排列。

注意:最终,合并后数组不应由函数返回,而是存储在数组 nums1 中。为了应对这种情况,nums1 的初始长度为 m + n,其中前 m 个元素表示应合并的元素,后 n 个元素为 0 ,应忽略。nums2 的长度为 n 。

示例 1:
输入:nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3
输出:[1,2,2,3,5,6]
解释:需要合并 [1,2,3] 和 [2,5,6] 。
合并结果是 [1,2,2,3,5,6] ,其中斜体加粗标注的为 nums1 中的元素。

示例 2:
输入:nums1 = [1], m = 1, nums2 = [], n = 0
输出:[1]
解释:需要合并 [1] 和 [] 。
合并结果是 [1] 。

示例 3:
输入:nums1 = [0], m = 0, nums2 = [1], n = 1
输出:[1]
解释:需要合并的数组是 [] 和 [1] 。
合并结果是 [1] 。
注意,因为 m = 0 ,所以 nums1 中没有元素。nums1 中仅存的 0 仅仅是为了确保合并结果可以顺利存放到 nums1 中。

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/merge-sorted-array
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

优秀代码:
从后面开始找位置就不用辅助空间,倒序比较赋值
把两个指针分别放在两个数组的末尾,即 nums1 的 m − 1 位和 nums2 的 n − 1 位。每次将较大的那个数字复制到 nums1 的后边,然后向前移动一位。 因为我们也要定位 nums1 的末尾,所以我们还需要第三个指针,以便复制。 在以下的代码里,我们直接利用 m 和 n 当作两个数组的指针,再额外创立一个 p 指针,起始位置为 m +n−1。每次向前移动 m 或 n 的时候,也要向前移动 p。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

时间复杂度:O(m+n)。
指针移动单调递减,最多移动 m+nm+n 次,因此时间复杂度为 O(m+n)O(m+n)。

空间复杂度:O(1)。
直接对数组 nums1​ 原地修改,不需要额外空间。

作者:LeetCode-Solution
链接:https://leetcode-cn.com/problems/merge-sorted-array/solution/he-bing-liang-ge-you-xu-shu-zu-by-leetco-rrb0/
来源:力扣(LeetCode)
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

void merge(int* nums1, int nums1Size, int m, int* nums2, int nums2Size, int n){
    //数组长度
    //nums2Size与n不一样大小吗?
    //m,n表示元素数目 不包括后面补上的0
    /*
        比较数组元素,相同则插入到后面
        如何经过一次循环进行两条路线的比较
        怎么插入?插入后后面的数据怎么办---->倒序<----逆向思维

        非算法:把数组2替换掉数组1里的0,然后.sort()排序。
        算法1:从后面开始找位置就不用辅助空间,倒序比较赋值

    */

    int p = m-- + n-- -1;
    //m--是先计算再减1 实际上p=m+n-1 然后m-1 n-1
    while(m>=0&&n>=0){
        nums1[p--]=nums1[m]>nums2[n]?nums1[m--]:nums2[n--];
        //nums2[n]是哪个?前面n已经-1了
    }
    //如果 nums1 的数字已经复制完,不要忘记把 nums2 的数字继续复制;如果 nums2 的数字已经复制完,剩余 nums1 的数字不需要改变,因为它们已经被排好序。
    while(n>=0){
        nums1[p--]=nums2[n--];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值