Celery的使用(django项目实例)
前文:Celery中文文档:http://docs.jinkan.org/docs/celery/getting-started/first-steps-with-celery.html#first-steps
版本容易踩坑,本文版本为:
- celery 3.1.26.post2
- django-celery 3.3.0
- django-redis 4.10.0
- redis 2.10.6
Celery的介绍
Celery 是一个 基于python开发的分布式异步消息任务队列,通过它可以轻松的实现任务的异步处理, 如果你的业务场景中需要用到异步任务,就可以考虑使用celery, 举几个实例场景中可用的例子:
- 你想对100台机器执行一条批量命令,可能会花很长时间 ,但你不想让你的程序等着结果返回,而是给你返回一个任务ID,你过一段时间只需要拿着这个任务id就可以拿到任务执行结果, 在任务执行ing进行时,你可以继续做其它的事情。
- 你想做一个定时任务,比如每天检测一下你们所有客户的资料,如果发现今天 是客户的生日,就给他发个短信祝福
Celery 在执行任务时需要通过一个消息中间件来接收和发送任务消息,以及存储任务结果, 一般使用rabbitMQ or Redis,后面会讲
Celery的核心模块
Celery有一下5个核心角色
Task
就是任务,有异步任务和定时任务
Broker
中间人,接收生产者发来的消息即Task,将任务存入队列。任务的消费者是Worker。Celery本身不提供队列服务,推荐用Redis或RabbitMQ实现队列服务。
Worker
执行任务的单元,它实时监控消息队列,如果有任务就获取任务并执行它。
Beat
定时任务调度器,根据配置定时将任务发送给Broler。
Backend
用于存储任务的执行结果。
各个角色间的关系看下面这张图理解一下:
Celery优点和流程
Celery有以下优点:
- 简单:一单熟悉了celery的工作流程后,配置和使用还是比较简单的
- 高可用:当任务执行失败或执行过程中发生连接中断,celery 会自动尝试重新执行任务
- 快速:一个单进程的celery每分钟可处理上百万个任务
- 灵活: 几乎celery的各个组件都可以被扩展及自定制
Celery基本工作流程图:
安装Celery
同时需要安装中间人broker,通常是RabbitMQ或者Redis,自行百度安装
这是redis和celery同时安装:
pip install -U "celery[redis]"
安装RabbitMQ:
sudo apt-get install rabbitmq-server
简单的使用celery
from celery import Celery
# broker是指定中间存储,backend是结果存储
app = Celery('tasks',
broker='redis://127.0.0.1/3',
backend='redis://127.0.0.1/3')
# app = Celery('tasks',broker='amqp://192.168.3.108',backend='rpc://192.168.3.108', # 新版本rpc将初步替代amqp,用的还是RabbitMQ# backend='amqp://192.168.3.108', # 如果是旧版本,没有rpc,那只能用amqp)
# 创建任务函数
@app.task
def work1():
print('这是任务1')
# 任务的发布,delay这里填函数参数
work1.delay()
启动celery,在终端启动
celery -A 任务模块名 worker -l info
django项目中使用celery
在项目文件夹下创建一个python package文件夹,取名为celery_tasks,里面分别创建启动文件main.py,配置文件config.py
config.py内容,需要大写,这里的re