MapReduce分片、分区、分组 傻傻分不清

MapReduce分片、分区、分组关系图

分片

对于HDFS中存储的一个文件,要进行Map处理前,需要将它切分成多个块,才能分配给不同的MapTask去执行。分片的数量等于启动的MapTask的数量。默认情况下,分片的大小就是HDFS的blockSize。
blockSize默认大小128M。
可通过设置minSize和maxSize来设置分片的大小。
PS:分片的大小直接影响到MapTask的数量,可根据实际的业务需求来调整分片的大小。

分区

在Reduce过程中,可以根据实际需求,把Map完的数据Reduce到不同的文件中。可通过setNumReduceTasks来设置分区的个数。
默认MapReduce使用HashPartitioner来进行分区。但有时,会造成数据倾斜,那么我们可以自定义分区算法。

//将小于等于3的key放在一个分区
//等于6的放到一个分区
//剩下其它的放到一个分区
public class MyPartitioner extends Partitioner<IntWritable, IntWritable> {
   
    
  • 3
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值