一文解决SQL查询中关于NULL的陷阱
NULL值处理是应用开发人员最容易出错误的地方,主要的原因是大家习惯使用二元的布尔逻辑来思考判断,而数据库对于NULL值的处理逻辑是三值逻辑。事实上,数据库优化器中缺陷最多的其实也是和NULL值处理相关的逻辑。即使是有着几十年历史的DB2/Teradata等成熟的数据库软件,仍然有超过20%的缺陷和NULL处理相关。
本文深度解析NULL值陷阱出现的根本原因,总结了简单有效的判断逻辑;同时针对日常开发中四种常见陷阱,解释其适用条件及解决方案;最后介绍了PawSQL Advisor中和NULL值处理相关的优化规则及其实现原理。看完本篇文章,解决关于NULL值处理的所有疑问。
先说结论
下面的判断逻辑覆盖关系数据库中对于NULL值的所有场景,理解下面的逻辑,你就可以避免NULL陷阱。
NULL
参与的所有的比较和算术运算符(>,=,<,<>,<=,>=,+,-,*,/)结果为unknown
unknown
的逻辑运算(AND
、OR
、NOT
)遵循三值运算的真值表- 如果运算结果直接返回用户,使用
NULL
来标识unknown
- 如果运算结果是作为条件判断真假,那么需要通过三值逻辑进行运算,并最终通过以下映射逻辑确定整体判定
- {
false
、unknown
} -> false - {
true
} ->true
- {
- 在
UNION
或INTERSECT
等集合运算中,NULL
被视为彼此相等。
三值逻辑
在逻辑学中的三值逻辑(three-valued,也称为三元,或三价逻辑,有时缩写为3VL)是几个多值逻辑系统中的其中之一。有三种状态来表示真、假和一个表示不确定的第三值;这相对于基础的二元逻辑(比如布尔逻辑,它只提供真假两种状态)。
三值逻辑有三个真值(true、false、unknown),它的AND、OR、NOT运算的真值表如下:
SQL中的NULL陷阱
1. 比较谓词与NULL
- 结论:
= null
并不能判断表达式为空, 判断表达式为空应该使用is null
假设有一张客户表,记录客户的编号,姓名和电话,其中电话和国家代码可以为空。
CREATE TABLE customer (
c_custkey int4 NOT NULL,
c_name varchar(25) NOT NULL,
c_nationcode char(8) NULL,
c_phone varchar(15) NULL,
c_regdate date NULL,
CONSTRAINT customer_pkey PRIMARY KEY (c_custkey)
);
insert into customer values(1, 'Randy', 'en', '13910010010', '20210911');
insert into customer values(2, 'Mandy', null, '13910010012', '20200211');
insert into customer values(3, 'Ray', 'us', null, '20180902');
通过下面的语句获取电话为空的客户是得不到的,它的结果永远为空
select * from customer where c_phone = null;
正确的写法应该是:
select * from customer where c_phone is null;
原因是:根据第一章节里的结论第一条c_phone = null的结果是unknown;然后根据结论里的4.1条unknown判断真假为false.
c_phone=null
-> unknown
-> false;
2. Case When与NULL
- 结论:
case expr when nulll
并不能判断表达式为空, 判断表达式为空应该case when expr is null
在where/having的筛选条件的错误写法还比较容易发现并纠正,而在藏在case 语句里使用null值判断就比较难以被发现,一般的SQL审核工具也难以处理。
譬如我们想要获取客户名称和国家的名称, 如果为空,默认是China:
select c_name, case c_nationcode
when 'us' then 'USA'
when 'cn' then 'China'
when null then 'China'
else 'Others' end
from customer
以上的语句并不会把国家代码为null转换为China;因为when null
实际上是安c_nationcode=null
进行运算的;正确的写法应该是:
select c_name, case when c_nationcode = 'us' then 'USA'
when c_nationcode = 'cn' then 'China'
when c_nationcode is null then 'China'
else 'Others' end
from customer
Note: PawSQL Advisor会分析输入SQL所有的case expr when null
的条件,并重写为 case expr is null
。
3. NOT IN 与NULL
- 结论:
NOT IN
子查询且选择列可空,这种情况不会返回任何记录
假设我们有一张订单表,其中客户编号和订单日期由于数据缺失可以为空
CREATE TABLE orders (
o_orderkey int4 NOT NULL,
o_custkey int4 NULL,
o_orderdate date NULL,
CONSTRAINT orders_pkey PRIMARY KEY (o_orderkey)
);
insert into orders values(1, 1, '2021-01-01');
insert into orders values(2, null, '2020-09-01');
insert into orders values(3, 3, null);
现在我们想要获取没有订单的客户(编号为2)进行营销,我们通常的写法可能是这样的,
select * from customer where c_custkey not in (select o_custkey from orders)
而事实上,上面的sql并没有返回我们预期的结果。原因就是子查询里的o_custkey
有空值,而NOT IN
的处理逻辑是这样的
c_custkey not in (1,3, null)
→ c_custkey<>1 and c_custkey<>3 and c_custkey<>null
→ c_custkey<>1 and c_custkey<>3 and unknown
→ unknown
-> false
事实上,如果子查询的结果集里有空值,这个SQL永远返回为空。
正确的写法有两种:
-
在子查询里加上非空限制
select * from customer where c_custkey not in (select o_custkey from orders where o_custkey is not null)
-
将NOT IN子查询改写为not exists子查询
select * from customer where not exists (select o_custkey from orders where o_custkey=c_custkey)
Note: PawSQL Advisor的采用第一种方式来进行重写优化,但是它的功能更强大,PawSQL Advisor先判定子查询里的列是否可能为空的,如果可能为空,它才会向用户推荐重写后的SQL。
4. 修饰符ALL与NULL
- 结论:ALL修饰的子查询选择列可空,这种情况不会返回任何记录
假设通过下面的sql来获取订单系统关闭后注册的用户
select * from customer where c_regdate > all(select o_orderdate from orders)
和上面的NOT IN类似的,由于子查询的结果中存在NULL,这个sql不会返回预期的结果。ALL 运算实际执行时也是与返回的结果集一一比较,然后进行AND的运算,最终结果unknown。而unknown作为条件进行评估是,结果为false.
正确的写法有两种:
-
在子查询里加上非空限制
select * from customer where c_regdate > all(select o_orderdate from orders where o_orderdate is not null)
-
将
expr > all
或expr >= all
改写为聚集函数expr > (select max()...)
(如果expr < all
或expr <= all
,则改写为expr < (select min() ...)
select * from customer where c_regdate > (select max(o_custkey) from orders)
Note: PawSQL Advisor的采用第二种方式来进行重写优化,原因是PawSQL Advisor对第二种重写后的sql还可以进一步通过重写(max/min子查询重写规则
)进行性能优化。
PawSQL Advisor关于NULL的重写优化
PawSQL Advisor 关于NULL处理的重写优化规则有三个,对应与上面的四种情况。
规则编码 | 规则描述 |
---|---|
UseEqual4NullRewrite | =null 或是case when null 并不能判断表达式为空, 判断表达式为空应该使用is null |
NotInNullableSubQueryRewrite | NOT IN 子查询且选择列可空,这种情况不会返回任何记录 |
AllQualifierSubQueryRewrite | ALL 修饰的子查询选择列可空,这种情况不会返回任何记录 |
PawSQL Advisor的功能更加强大,它会根据DDL中列的定义是否为nullable,以及作用在列上的运算是否会产生nullable的结果,来确定子查询里的查询列是否nullable的,如果可能为空,它才会向用户推荐重写后的SQL。
以NotInNullableSubQueryRewrite为例,它的处理逻辑是
1. 遍历Query语法树,获取所有的NOT IN 谓词
2. 如果这个谓词是PredicateInValueSelect( 样式`expr not in (select ....)`)
1. 判断子查询结果集的列是否可以为空
1. 不可以为空,返回
2. 可以为空,为结果集里的每个可以为空的列rc,判定在子查询的where条件里是否有 `rc is not null`谓词
1. 如果没有,新增一个 `rc is not null`谓词,通过and连接符合并到子查询的where条件里
2. 如果有,继续判定下个列
3. 如果这个谓词是PredicateInValueList (`expr not in values(1,2,null)`)
1.遍历值列表
1. 如果值为null,删除
判断是否可以为空的逻辑如下:
isNullable(选择列expr){
if (expr是数据库表的列) {
if (列定义可以为NULL)
return true;
else
return true;
} else if (选择列是NULL) {
return true;
} else if (选择列是非NULL常量或是变量) {
return false;
} else if (选择列是组合表达式){
return 组合表达式的每个分项 的 or 结果;
}else if (选择列是函数) {
if(函数是"SUM"、"Count"、"AVG")
return false;
else
return isNullable(函数参数)
} else if (expr是标量子查询) {
return isNullable(标量子查询的选择列)
} else{
return true;
}
}
PawSQL Advisor关于NULL值处理优化的评测
评测案例
共7个案例,覆盖NULL
处理的常用场景,其中,customer
表定义中列c_phone
及c_nationkey
可空。
-- 案例1: = null 重写为 is null
select count(*) from customer where c_phone=null;
-- 案例2:case expr when null 重写为 case when expr is null
select case c_phone when null then 1 when '139%' then 0 else -1 end from customer where not c_phone = null;
-- 案例 3: c_nationkey可空,增加 c_nationkey is not null条件
select count(*) from nation where n_nationkey not in (select c_nationkey from customer);
-- 案例 4: c_nationkey可空,所以max(c_nationkey)可空, 增加 c_nationkey is not null条件
select count(*) from nation where n_nationkey not in (select max(c_nationkey) from customer group by c_mktsegment);
-- 案例 5: count()/sum() 永远不为空,所以无需重写
select count(*) from nation where (n_name,n_nationkey) not in (select 'China',c_nationkey from customer);
-- 案例 6: c_name不为空,但是c_nationkey可空,所以需增加 c_nationkey is not null 条件
select count(*) from nation where n_nationkey not in (select count(c_nationkey) from customer group by c_mktsegment);
-- 案例 7: c_nationkey可空,所以重写为 > (select min(c_nationkey) from customer)
select count(*) from customer where n_nationkey > all(select c_nationkey from customer);
PawSQL Advisor 输出(概要)
/********************************************************************\
* *
* PawSQL Optimization Summary *
* *
* Powered by PawSQL(2021- ) *
* *
\********************************************************************/
1. Optimization Summary
- There are 7 query analyzed;
- There are 6 optimization rewrites for 6 queries;
- There are 9 violations of optimization rule against 6 queries;
- There are 1 indices recommended for 4 queries;
- There is 12.91% performance improvement.
2. Optimization Rule Violations
- RuleUseEqual4Null: [null.sql-stmt2, null.sql-stmt1]
- RuleAllQualifierSubQueryRewrite: [null.sql-stmt7]
- RuleNoCond4NonAggSelect: [null.sql-stmt3, null.sql-stmt6, null.sql-stmt7]
- RuleNotInNullableSubQueryRewrite: [null.sql-stmt4, null.sql-stmt3, null.sql-stmt6]
...
PawSQL Advisor 输出(单SQL详情)
-
案例 1:
= null
重写为is null
-- 原SQL select count(*) from customer where c_phone=null; -- 重写后的SQL select count(*) from customer where customer.c_phone is null;
-
案例 2:
case expr when null
重写为case when expr is null
-- 原SQL select case c_phone when null then 1 when '139%' then 0 else -1 end from customer; -- 重写后的SQL select case when c_phone is null then 1 when c_phone = '139%' then 0 else -1 end from customer;
-
案例 3:
c_nationkey
可空,增加c_nationkey is not null
条件-- 原SQL select count(*) from nation where n_nationkey not in (select c_nationkey from customer); -- 重写后的SQL select count(*) from nation where n_nationkey not in ( select c_nationkey from customer where c_nationkey is not null)
-
案例 4:
c_nationkey
可空,所以max(c_nationkey)
可空, 增加c_nationkey is not null
条件-- 原SQL select count(*) from nation where n_nationkey not in (select max(c_nationkey) from customer group by c_mktsegment); -- 重写后的SQL select count(*) from nation where n_nationkey not in ( select max(customer.c_nationkey) from customer where c_nationkey is not null group by c_mktsegment)
-
案例 5:
count(c_nationkey )
永远不为空,所以无需重写select count(*) from nation where n_nationkey not in (select count(c_nationkey) from customer group by c_mktsegment);
-
案例 6:
c_name
不为空,但是c_nationkey
可空,所以需增加c_nationkey is not null
条件-- 原SQL select count(*) from nation where (n_name,n_nationkey) not in (select 'China',c_nationkey from customer); -- 重写后的SQL select count(*) from nation where (n_name,n_nationkey) not in ( select 'China', c_nationkey from customer where customer.c_nationkey is not null)
-
案例 7:
c_nationkey
可空,所以重写为> (select min(c_nationkey) from customer)
-- 原SQL select count(*) from customer where n_nationkey > all(select c_nationkey from customer); -- 重写后的SQL select count(*) from customer where n_nationkey > (select min(c_nationkey) from customer)