自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(8)
  • 收藏
  • 关注

原创 1007. 素数对猜想 (20)——PAT乙级

让我们定义 dn 为:dn = pn+1 - pn,其中 pi 是第i个素数。显然有 d1=1 且对于n>1有 dn 是偶数。“素数对猜想”认为“存在无穷多对相邻且差为2的素数”。现给定任意正整数N (输入格式:每个测试输入包含1个测试用例,给出正整数N。输出格式:每个测试用例的输出占一行,不超过N的满足猜想的素数对的个数。输入样例:20输出样例:4注意:在

2017-03-30 19:55:39 253

原创 1006. 换个格式输出整数 (15)——PAT乙级

让我们用字母B来表示“百”、字母S表示“十”,用“12...n”来表示个位数字n(输入格式:每个测试输入包含1个测试用例,给出正整数n(输出格式:每个测试用例的输出占一行,用规定的格式输出n。输入样例1:234输出样例1:BBSSS1234输入样例2:23输出样例2:SS123#includeusing namespace std;int ma

2017-03-30 19:33:50 317

原创 1005. 继续(3n+1)猜想 (25)——PAT乙级

卡拉兹(Callatz)猜想已经在1001中给出了描述。在这个题目里,情况稍微有些复杂。当我们验证卡拉兹猜想的时候,为了避免重复计算,可以记录下递推过程中遇到的每一个数。例如对n=3进行验证的时候,我们需要计算3、5、8、4、2、1,则当我们对n=5、8、4、2进行验证的时候,就可以直接判定卡拉兹猜想的真伪,而不需要重复计算,因为这4个数已经在验证3的时候遇到过了,我们称5、8、4、2是被3“

2017-03-30 19:12:24 302

原创 集合划分问题——算法

问题描述: n个元素的集合{1,2,.,n }可以划分为若干个非空子集。例如,当n=4 时,集合{1,2,3,4}可以划分为15个不同的非空子集如下: {1},{2},{3},{4}}, {{1,2},{3},{4}}, {{1,3},{2},{4}}, {{1,4},{2},{3}}, {{2,3},{1},{4}}, {{2,4},{1},{3}}, {{3,4},{1},

2017-03-29 19:56:29 21852 4

原创 1004. 成绩排名 (20)——PAT乙级

读入n名学生的姓名、学号、成绩,分别输出成绩最高和成绩最低学生的姓名和学号。输入格式:每个测试输入包含1个测试用例,格式为  第1行:正整数n  第2行:第1个学生的姓名 学号 成绩  第3行:第2个学生的姓名 学号 成绩  ... ... ...  第n+1行:第n个学生的姓名 学号 成绩其中姓名和学号均为不超过10个字符的字符串,成绩为0到100

2017-03-19 15:46:52 302

原创 1003. 我要通过!(20)——PAT乙级

“答案正确”是自动判题系统给出的最令人欢喜的回复。本题属于PAT的“答案正确”大派送 —— 只要读入的字符串满足下列条件,系统就输出“答案正确”,否则输出“答案错误”。得到“答案正确”的条件是:1. 字符串中必须仅有P, A, T这三种字符,不可以包含其它字符;2. 任意形如 xPATx 的字符串都可以获得“答案正确”,其中 x 或者是空字符串,或者是仅由字母 A 组成的字符串;3

2017-03-19 15:18:52 353

原创 1002. 写出这个数 (20)——PAT乙级

读入一个自然数n,计算其各位数字之和,用汉语拼音写出和的每一位数字。输入格式:每个测试输入包含1个测试用例,即给出自然数n的值。这里保证n小于10100。输出格式:在一行内输出n的各位数字之和的每一位,拼音数字间有1空格,但一行中最后一个拼音数字后没有空格。输入样例:1234567890987654321123456789输出样例:yi san wu#include

2017-03-19 14:34:21 338

原创 1001. 害死人不偿命的(3n+1)猜想 (15)——PAT乙级

卡拉兹(Callatz)猜想:对任何一个自然数n,如果它是偶数,那么把它砍掉一半;如果它是奇数,那么把(3n+1)砍掉一半。这样一直反复砍下去,最后一定在某一步得到n=1。卡拉兹在1950年的世界数学家大会上公布了这个猜想,传说当时耶鲁大学师生齐动员,拼命想证明这个貌似很傻很天真的命题,结果闹得学生们无心学业,一心只证(3n+1),以至于有人说这是一个阴谋,卡拉兹是在蓄意延缓美国数学界教学与科

2017-03-19 14:07:46 212

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除