jvm收集器

年轻代收集器

STW即GC时候的停顿时间,他会暂停我们程序中的所有线程。如果STW所用的时间长而且次数多的话,那么我们整个系统稳定性以及可用性将大大降低。

  因此我们在必要的时候需要对虚拟机进行调优,调优的主要目标之一就是降低STW的时间,也就是减少Full GC的次数。那么这里我们从调优的角度来分析各个收集器的优势与不足。

  首先从作用于年轻代的收集器开始(采用复制的收集算法):

  • Serial收集器:一个单线程收集器,在进行回收的时候,必须暂停其他所有的工作线程,直到收集结束。缺点:因为要完全暂停线程,所以用户体验不佳。但是由于新生代回收得较快,所以停顿的时间非常少,而且没有线程切换的开销,因此也简单高效。通过-XX:+UseSerialGC参数启用。
  • ParNew收集器:这个是Serial收集器的多线程版本,适用于多核CPU的设备。但对于单核的设备来说,需要进行线程之间的切换,效率反而没有单线程的高。通过-XX:ParallelGCThreads参数限制收集的线程数,-XX:+UseParNewGC参数启用。
  • Parallel Scavenge收集器:该收集器是我们文章中的所有例子的默认年轻代收集器。他的关注点和其他的收集器不同,其他的关注点是尽可能的缩短Full GC的时间。而该收集器关注的是一个可控的吞吐量。吞吐量=运行代码的时间/(运行代码的时间+GC的时间),通过参数-XX:MaxGCPauseMillis设置最大GC的停顿时间和-XX:GCTimeRatio 设置吞吐量的大小。-XX:+UseParallelGC参数启用。主要适合在后台运算而不需要太多交互的任务。

      另外,可以通过-XX:+UseAdaptiveSizePolicy参数开启自适应调节策略,这样可以免去我们自己设置堆内存的一些细节参数,比如新生代内存大小,Eden与Survivor之间的比例等等。这个参数适合对内存手工优化存在困难的时候使用,他能监控系统当前的状态,动态的调整以达到最大的吞吐量。

      这里我们只大概了解了下年轻代的收集器,下面一张图给大家总结一下:
    年轻代收集器

JAVA 年老代收集器

老年代存活的一般是大对象以及生命很顽强的对象,因此新生代的复制算法很明显不能适应该区域的特性,所以老年代采用的是“标记-清除-整理”算法(以前的博文有详细讨论过)。

  • Serila Old收集器:该收集器是Serial收集器的老年代版,同样是一个单线程的收集器,优劣势和Serial收集器一样,这里就不多说了。
  • Parallel Old收集器:在我们之前文章的代码例子中默认的年老代收集器,也是Parallel Scavenge收集器的老年代版本。关注点也和Parallel Scavenge收集器一样,注重系统的吞吐量,适合于CPU资源敏感的场合。
  • CMS(Concurrent Mark Sweep)收集器:是一种以最短停顿时间为目标的收集器。当应用尤其重视服务的响应速度,希望系统能有最短的停顿时间,该收集器非常适合。

      CMS收集器的收集过程比以往的收集器都要复杂,收集过程分为四个步骤:初始标记、并发标记、重新标记、并发清除。

      先介绍下每个过程,再来说他是怎么达到最短停顿时间这个目标的。初始标记是需要进行STW的,但仅仅只是标记GC Roots能够直接关联的对象(并不是死掉的对象哦~),由于有OopMap的存在,因此该步骤速度非常快。如图,其中蓝色底纹的便是能够直接关联的对象。

直接关联的对象

  接着就进入了第二步,并发标记。这步是不需要STW的,不需要!他和我们的主程序线程共同执行,从上一步被标记的对象开始,进行可达性分析组成“关系网”。由于不需要进行SWT,所以该步骤不会影响用户体验。既然不暂停线程,小伙伴是不是又怕回收了不该回收的对象?为了避免这个问题,因此就有了第三步。

  重新标记是需要STW的,但这又有什么关系呢?重新标记只是为了修改在上一步标记中有了变动的对象。有了这一步,就不怕回收掉不该回收的对象了。而且,由于这一步只是对上一步的结果进行修改,所以STW的时间相当短,对用户的影响不大。

  最后一步就是并发清除了,这一步也不需要进行STW,只是清除一些不在“关系网”上的对象而已。

  讲到这里,大家应该知道了该收集器如何做到最短停顿时间了吧。通过一次短STW时间的标记和一次不需要STW的标记,大大缩下来第三步标记的范围(只需要修改就好了),第四步不需要STW。

  看上去很完美,但还是有他的缺陷:大量使用了并发操作,因此会占用一部分CPU的资源,导致吞吐量下降;当在并发清除垃圾的时候,也就是第四步的时候,他是与当前主线程并发执行的,因此他在回收的时候,我们的主线程又会产生新的垃圾,而这些垃圾在这次回收过程已经回收不了了,只能等待下一次回收了。这些垃圾又叫做“浮动垃圾”。

JAVA G1收集器

  在前两篇博文中讲解了新生代和年老代的收集器,在本篇博文中介绍一个收集范围涵盖整个堆的收集器——G1收集器。

先讲讲G1收集器的特点,他也是个多线程的收集器,能够充分利用多个CPU进行工作,收集方式也与CMS收集器类似,因此不会有太久的停顿。

  虽然回收的范围是整个堆,但还是有分代回收的回收方式。在年轻代依然采用复制算法;年老代也同样采用“标记-清除-整理”算法。但是,新生代与老年代在堆内存中的布局就和以往的收集器有着很大的区别:G1将整个堆分成了一个个大小相等的独立区域,叫做region。其中依然保存着新生代和年老代的概念,如图:

region堆内存

  是不是和之前博文中看到的不同(这是内存空间图,不要和垃圾回收的图弄混了),以往只是简单的分区域,而这里是将整个堆分成多个大小相等的区域。

  他的回收过程也分为四个部分:初始标记、并发标记、最终标记、筛选回收。

  大家是不是觉得很熟悉!上面我们也说过了,和CMS收集器类似,初始标记需要STW;并发标记不需要;最终标记就是做一些小修改,需要STW;而筛选回收则有些不同,在众多的region中,每个region可回收的空间各不相同,但是回收所消耗的时间是需要控制的,不能太长,因此G1就会筛选出一些可回收空间比较大的region进行回收,这就是G1的优先回收机制。这也是保证了G1收集器能在有限的时间内能够获得最高回收效率的原因。通过-XX:MaxGCPauseMills=50毫秒设置有限的收集时间。

  每个region之间的对象引用通过remembered set来维护,每个region都有一个remembered set,remembered set中包含了引用当前region中对象的指针。虚拟机正是通过这个remembered set去避免对整个堆进行扫描来确认可回收的对象。

  到此,所有的收集器都已经讲完了,但是很重要的一点:每个收集器是不能随意进行组合使用的!这里我列出一个搭配使用的表格提供大家参考使用:

垃圾回收器组合

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值