量子力学中的希尔伯特空间与线性算子
1. 希尔伯特空间基础
1.1 预备知识
在量子力学里,希尔伯特空间占据着核心地位。我们先从预希尔伯特空间的定义入手,一个线性空间 (L) 若定义了一个数值函数(标量积或内积),能为 (L) 中的每对向量 (f)、(g) 赋予一个复数 (C),且满足以下条件,就称其为预希尔伯特空间:
- ((f, f) \geq 0),且 ((f, f) = 0) 当且仅当 (f = 0);
- ((f, g) = \overline{(g, f)});
- ((cf, g) = c(f, g)),其中 (c) 为任意复数;
- ((f_1 + f_2, g) = (f_1, g) + (f_2, g))。
基于此,还能推出 ((f, cg) = \overline{c}(f, g))。
1.2 赋范空间与希尔伯特空间
线性空间 (E) 若对每个 (f \in E) 都关联一个实数 (|f|)(向量 (f) 的范数),且满足:
- (|f| \geq 0),且 (|f| = 0) 当且仅当 (f = 0);
- (|cf| = |c||f|),其中 (c) 为任意复数;
- (|f + g| \leq |f| + |g|),则称 (E) 为赋范空间。
赋范线性空间 (E) 的拓扑由距离 (d(f, g) = |f - g|) 定义。若给定了标量积,就能引入范数,向量 (f) 的范数定义为 (|f| := \sqrt{(f, f)})。当 (|f| = 1) 时,称向量 (f) 为归一化向量。若 ((f, g) = 0),则称