14、量子力学中的希尔伯特空间与线性算子

量子力学中的希尔伯特空间与线性算子

1. 希尔伯特空间基础

1.1 预备知识

在量子力学里,希尔伯特空间占据着核心地位。我们先从预希尔伯特空间的定义入手,一个线性空间 (L) 若定义了一个数值函数(标量积或内积),能为 (L) 中的每对向量 (f)、(g) 赋予一个复数 (C),且满足以下条件,就称其为预希尔伯特空间:
- ((f, f) \geq 0),且 ((f, f) = 0) 当且仅当 (f = 0);
- ((f, g) = \overline{(g, f)});
- ((cf, g) = c(f, g)),其中 (c) 为任意复数;
- ((f_1 + f_2, g) = (f_1, g) + (f_2, g))。

基于此,还能推出 ((f, cg) = \overline{c}(f, g))。

1.2 赋范空间与希尔伯特空间

线性空间 (E) 若对每个 (f \in E) 都关联一个实数 (|f|)(向量 (f) 的范数),且满足:
- (|f| \geq 0),且 (|f| = 0) 当且仅当 (f = 0);
- (|cf| = |c||f|),其中 (c) 为任意复数;
- (|f + g| \leq |f| + |g|),则称 (E) 为赋范空间。

赋范线性空间 (E) 的拓扑由距离 (d(f, g) = |f - g|) 定义。若给定了标量积,就能引入范数,向量 (f) 的范数定义为 (|f| := \sqrt{(f, f)})。当 (|f| = 1) 时,称向量 (f) 为归一化向量。若 ((f, g) = 0),则称

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值