杨辉三角求组合数

杨辉三角:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

……………………

 

杨辉三角的性质:

1.第n行的元素个数有n个;

2.第n行的所有元素之和为2(n-1);

 3.第n行第m个数的值为C(n-1, m-1),其中C为组合数;

4.(a+b)展开后的各项系数等于第n+1行的值;

5.第n行第m个数的奇偶判断,及C(n-1,m-1)的奇偶判断:(m-1)&(n-1)==(m-1)? 奇 : 偶;

 

杨辉三角打印代码:

void YangHui() {

    memset(Triangle, 0, sizeof(Triangle));

    for (int i=0; i<n; ++i) {

        Triangle[i][0]=1;

        for (int j=1; j<n; ++j) Triangle[i][j]=Triangle[i-1][j-1]+Triangle[i-1][j];

    }

}

 

杨辉三角的应用:

最好的应用之一就是减少求组合数的复杂度:将杨辉三角的值打印出来后,只需要查表即可得到正确结果,这个对于求排列组合数非常有用:

其次是利用奇偶性质找规律:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值