GoogleLeNet V2 & V3 —— Batch Normalization

本文探讨了GoogleLeNet V2和V3中引入的Batch Normalization(BN)技术,旨在解决内部协变量偏移问题,加速深度网络训练的收敛速度。BN通过在激活层前进行数据标准化,实现输入数据的固定分布,从而提高训练效率。此外,文章还讨论了BN层的位置、数据白化、网络中的应用以及实验效果,如在MNIST和GoogleLeNet V1上的对比,验证了BN在加速训练和提升模型精度方面的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


GoogleLeNet出来之后,Google在这个基础上又演进了几个版本,一般来说是说有4个版本,之前的那个是V1,然后有一个V2,V3和V4。
其实我个人感觉V2和V3应该是在一起的,都是综合了两篇论文中的一些改进点来的:

  • Accelerating deep network training by reducing internal covariate shift
  • Rethinking the Inception Architecture for Computer Vision

其中,第一篇是提出了一个重要的概念:Batch Normalization,是针对内部协变量偏移问题的,简单的说就是加速训练过程。把BN作为激活层之前的另外一个网络层,可以加速网络训练的收敛速度。
第二篇就提出了一些新的卷积方法等,然后总和第一篇论文一起就提出了一个inception v2的网络结构,没有明确提到v3,但是其中的一些变形作为了v3版本。
我们就来看一下这两篇论文说了点啥,这个v2和v3又改进了点啥。

Batch Normalization

internal covariate shift

讲BN之前

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

新兴AI民工

码字不易,各位看客随意

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值