原创的《Python数据处理200题》.pdf

前言

Pandas与NumPy都是Python数据分析中的利器,但是对着官方文档学习是十分枯燥且低效的方式,因此我精心挑选了200个Python数据处理中的常用操作,并整理成习题的形式创作了Pandas进阶修炼120题NumPy进阶修炼80题,希望用刷题的方式让各位读者快速掌握如何使用Python进行数据处理。

Pandas进阶修炼120题

该系列一共涵盖了数据处理、计算、可视化等常用操作,并且针对部分习题给出了多种解法与注解,并且还有B站视频讲解。跟着动手敲一边代码一定能让你有所收获,来看看部分内容吧!

现在我已经将完整版习题与源码整理成电子版供大家学习,获取方式也很简单,可以按照下面的步骤获取:

1.扫描下面二维码关注我的公众号

2.回复pandas

NumPy进阶修炼80题

NumPy进阶修改80题现在已经全部更新完毕,80道习题涵盖了NumPy中数组创建、访问、筛选、修改、计算等常用操作,如果不熟悉NumPy的读者可以刷一遍,因为里面的代码大多拿走就能用,所以如果你已经了解NumPy的基本操作,我更建议将这80题当成速查手册使用,随用随查!为了让各位读者更方便的刷题,我已经将NumPy80题整理在Notebook中,共分为两个版本,一份无答案版可以用来刷题????

一份有答案版本用来参考学习????

NumPy80题可以按照下面的步骤获取:

1.扫描下面二维码关注我的公众号

2.回复numpy

除了Pandas与NumPy系列,Python数据可视化专题也正在更新中,另外公众号还有大量Python爬虫/办公自动化案例,长按关注上方公众号回复【爬虫】【自动化】可以查看相关文章!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值