人群 :适合刚学Python的数据分析师或刚学数据科学以及科学计算的Python编程者。
阅读本书可以获得一份关于在Python下操作、处理、清洗、规整数据集的完整说明。本书第二版针对Python 3.6进行了更新,并增加实际案例向你展示如何高效地解决一系列数据分析问题。你将在阅读过程中学习到新版本的pandas、NumPy、IPython和Jupyter。
本书由Wes McKinney创作,他是Python pandas项目的创始人。本书是对Python数据科学工具的实操化、现代化的介绍,非常适合刚学Python的数据分析师或刚学数据科学以及科学计算的Python编程者。数据文件和相关的材料可以在GitHub上找到:
l 使用IPython shell和Jupyter notebook进行探索性计算
l 学习NumPy(Numerical Python)的基础和高级特性
l 入门pandas库中的数据分析工具
l 使用灵活工具对数据进行载入、清洗、变换、合并和重塑
l 使用matpl