树分块 3.3

这篇博客探讨了如何利用并查集(Disjoint Set Union,DSU)数据结构解决图论中的连通性问题。通过两个C++实现示例,展示了在不同场景下DSU的使用,包括初始化、添加边、求解连通分量等操作。博主acmermxc深入浅出地解释了DSU的工作原理,并通过实际的代码运行情况验证了算法的正确性。此外,文章还讨论了当图中边的数量与连通分量的关系,以及在连通性判断中的应用。

n有区别么? 实在不能理解

//acmer mxc
#include <bits/stdc++.h>
#define int long long
#define dd double
#define sc(x) cout<<#x<<" : "<<x<<endl;

using namespace std;
const int N=2e5+5;
int d[N],v[N];
int head[N],nnext[N],edge[N],ver[N];
int size[N];
int tot=1;
int ans=0,k;
void add(int x,int y)
{
	ver[++tot]=y;
	nnext[tot]=head[x],head[x]=tot;
}

void init()
{
	memset(head,0,sizeof(size));
	memset(head,0,sizeof(head));
	memset(head,0,sizeof(nnext));
	memset(head,0,sizeof(edge));
	memset(head,0,sizeof(ver));
	memset(head,0,sizeof(d));
	memset(head,0,sizeof(v));
	tot=1;
	ans=0;
}

void dfs(int x,int fa)
{
	size[x]=1;
	for(int i=head[x];i;i=nnext[i])
	{
		int y=ver[i];
		if(y==fa) continue;
		dfs(y,x);
		size[x]+=size[y];
	}
	if(size[x]==k) ans++,size[x]-=k;
}

void solve()
{
	init();
	int m;
	scanf("%lld%lld",&m,&k);
	for(int j=1;j<m;j++)
	{
		int a,b;
		scanf("%lld%lld",&a,&b);
		add(a,b);
		add(b,a);
	}
	dfs(1,-1);
	if(m%k!=0)
	{
		puts("NO");
		return;
	}
	if(ans==m/k)puts("YES");
	else puts("NO");
}

signed main()
{
	int T=1;
	cin>>T;
	for(int i=1;i<=T;i++)
	{
		solve();
	}
	return 0;
}
//acmer mxc
#include <bits/stdc++.h>
#define int long long
#define dd double
#define sc(x) cout<<#x<<" : "<<x<<endl;

using namespace std;
const int N=1e5+5;
int d[N],v[N];
int head[N],nnext[N],edge[N],ver[N];
int size[N];
int tot=1;
int ans=0,k;
void add(int x,int y)
{
	ver[++tot]=y;
	nnext[tot]=head[x],head[x]=tot;
}

void init()
{
	memset(head,0,sizeof(size));
	memset(head,0,sizeof(head));
	memset(head,0,sizeof(nnext));
	memset(head,0,sizeof(edge));
	memset(head,0,sizeof(ver));
	memset(head,0,sizeof(d));
	memset(head,0,sizeof(v));
	tot=1;
	ans=0;
}

void dfs(int x,int fa)
{
	size[x]=1;
	for(int i=head[x];i;i=nnext[i])
	{
		int y=ver[i];
		if(y==fa) continue;
		dfs(y,x);
		size[x]+=size[y];
	}
	if(size[x]==k) ans++,size[x]-=k;
}

void solve()
{
	int n;
	scanf("%lld",&n);
	for(int i=1;i<=n;i++)
	{
		init();
		int m;
		scanf("%lld%lld",&m,&k);
		for(int j=1;j<m;j++)
		{
			int a,b;
			scanf("%lld%lld",&a,&b);
			add(a,b);
			add(b,a);
		}
		dfs(1,-1);
		if(m%k!=0)
		{
			puts("NO");
			return;
		}
		if(ans==m/k)puts("YES");
		else puts("NO");
	}
}

signed main()
{
	int T=1;
	for(int i=1;i<=T;i++)
	{
		solve();
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

while WA er

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值