- 博客(40)
- 收藏
- 关注
原创 LoRA微调首选Q和V的奥秘
LoRA微调Transformer模型时,通常优先选择注意力机制中的Query和Value矩阵进行优化。这是因为Q矩阵直接影响注意力分配方向,V矩阵决定输出内容,二者对模型性能提升效果更显著。相比Key矩阵的中间媒介作用,微调Q和V能以较少参数量获得更好效果,且符合注意力机制工作原理。实际应用中会创建低秩矩阵并冻结原权重,仅训练新增参数。虽Q和V是主流选择,但根据任务需求也可调整组合策略。这种选择性优化体现了LoRA方法在计算效率和性能提升间的平衡智慧。
2025-05-30 20:50:32
1164
原创 高效微调大模型:LoRA技术详解
LoRA是一种高效微调大模型的技术,通过冻结预训练模型参数并引入低秩矩阵进行增量调整。它只训练两个低秩矩阵(A和B)来代替全参数微调,显著降低计算和存储成本。矩阵秩反映了信息独立性,LoRA利用低秩特性(r远小于原维度)实现参数高效适配。这种方法既保留了大模型的通用能力,又能快速适应新任务,成为当前主流的模型微调方案。
2025-05-30 18:59:41
719
原创 揭秘大模型核心技术:自注意力机制
自注意力机制是Transformer架构的核心技术,通过计算句子中每个词与其他词的关联性,让模型学会理解上下文关系。具体步骤包括生成查询、键和值向量,计算相关性分数,并进行加权融合。多头注意力则通过并行多个注意力头,从不同角度捕捉信息,提升模型的理解能力。与传统RNN相比,自注意力机制能直接处理长距离依赖,实现并行计算,并动态调整关注区域。这种机制使大模型能够全面分析语言结构,是GPT等强大语言能力的核心支撑。
2025-05-29 20:16:38
461
原创 LangChain与SchedulerX强强联手:AI任务调度新高度
本文介绍了使用SchedulerX任务调度系统管理LangChain脚本的方法。SchedulerX支持脚本版本管理、定时调度、资源优化、限流控制等功能,适用于风险监控、数据分析等AI任务场景。文章重点讲解了Prompt管理的两种实现方式:直接传递Prompt参数和使用PromptTemplate模板。同时介绍了SchedulerX的两种执行模式(ECS和K8s)、限流控制、失败重试、依赖编排等特性,以及其提供的企业级可观测能力。最后展望了AI任务调度在模型切换、Tokens限流等方面的未来发展方向。
2025-05-29 17:57:56
642
原创 3个提示词技巧让deepseek更懂你!
本文介绍了优化AI交互效果的核心方法 - 提示词设计。关键要点包括:1.提示词设计三原则(清晰明确、提供背景、明确输出要求);2.两种实用模板(结构化提问的"身份-目标-方式"框架和分步提问法);3.进阶技巧:用AI生成提示词(如"请帮我生成能得到量身定制减肥计划的提问")。通过具体对比案例展示,证明优质提示词能显著提升回答的相关性和实用性,特别适合需要个性化解决方案的场景。
2025-05-29 15:51:33
645
原创 大模型微调技术全解析与实战指南
本文系统梳理了大模型训练中的微调技术,包括prompt tuning、prefix tuning、LoRA、p-tuning及其改进版本p-tuning v2和AdaLoRA等方法。文章详细对比了各技术的原理、实现代码和性能表现,指出不同方法在参数量、计算效率和任务适配性上的特点。同时介绍了基于DeepSpeed框架结合LoRA技术的实践方案,以及分布式训练框架Petals通过模型分块计算实现大模型高效训练的创新思路。这些微调技术显著降低了大规模语言模型的训练门槛,为资源受限场景下的模型优化提供了多样化选择
2025-05-28 18:44:27
796
原创 揭秘RAG三大核心:AI如何精准作答
经典RAG工作流程解析 RAG(检索增强生成)系统通过整合语言模型和信息检索技术,实现了更精准的文本生成。其核心包含三个组件:1)预训练语言模型提供基础理解能力;2)向量数据库将文本转化为语义向量,支持高效检索;3)用户查询触发系统响应流程。工作流程分为三个阶段:检索阶段通过语义匹配查找相关文档,增强阶段将检索结果与用户查询结合,生成阶段由语言模型输出最终回答。RAG系统特别适用于需要实时更新和专业知识的场景,有效解决了纯语言模型可能产生的事实性错误问题。
2025-05-28 14:48:54
889
原创 用Dify零代码搭建一个专属大模型知识库
为了让大家把所学变成应用,“他”来了,一个零代码经验也可以搭建一个可用的大模型知识库,他来了,注意了,是零代码+可用,零代码+可用,零代码+可用......(重要的事情说三遍)通过学习能得到什么?可以得到一个简单的应用可以更深入了解大模型知识库的工作流大家有兴趣,可以跳到文末先看效果重要的工具我们先来看下今天这个小项目需要的概念和工具: Dify:Dify是一个开源的大语言模型(LLM)应用开发平台,它融合了后端即服务(Backend as a Service,BaaS
2025-05-28 10:00:24
369
原创 一文拆解预训练全流程
写这篇文章的原因是大概在两周前,我看完了卡帕西三个半小时在油管上课程。他用简单的语言,讲明白了大模型从无到有的建立。其中他还罗列了非常多好用的网站工具,例如可视化的动画工具理解Transformer架构。如果从英语为母语的人的角度去看这个课程肯定是非常非常简单,但是作为一个非母语,而且英语又没有那么好的人,看看这个视频还是有点费劲的。我看完这个视频后,又花了几天时间,点开了他课程里所有的链接、看了链接里面的论文,才弄明白他说的所有东西。所以我决定一共写三篇文章,把卡帕西德课程转换成我们国人也能听懂的
2025-05-27 18:00:09
976
原创 RAG综述:大模型检索增强生成全解析
《RAG技术综述:大模型知识增强的进化路径》摘要 这篇深度解析文章系统梳理了检索增强生成(RAG)技术的最新发展。文章基于arXiv热门综述论文,揭示了RAG从原始形态到模块化系统的三级进化路径:原始RAG仅含基础检索生成流程,高级RAG引入精细化预处理和混合检索策略,模块化RAG则通过可插拔组件实现复杂功能。研究指出RAG相比微调具有知识更新成本低、可解释性强等优势,并详细分析了索引构建、语义对齐、多模态扩展等关键技术挑战。文章特别强调检索器与大模型的协同优化是当前研究重点,同时提供了RAGAS等评估框架
2025-05-27 15:18:52
974
原创 两种调度Dify工作流的解决方案
本文介绍了两种调度Dify工作流的解决方案:Dify-Schedule和XXL-JOB。Dify作为开源大模型开发平台,工作流的定时调度和性能问题(如数据库记录堆积)是主要痛点。Dify-Schedule基于GitHub Actions实现,但存在调度延时大、配置复杂等局限。XXL-JOB方案支持秒级调度、内网访问、精细权限管控和限流功能,尤其阿里云版本还提供企业级报警、可视化监控和节点追踪等优势。通过对比表展示了两者在调度频率、网络支持、报警功能等方面的差异,为不同场景下的Dify工作流调度需求提供了参考
2025-05-27 14:06:21
1500
原创 检索增强生成(RAG),自动生成精准用例!
RAG技术为测试开发带来革新:通过实时检索最新文档自动生成精准测试用例,解决传统测试开发中的文档代码脱节、维护成本高等痛点。其工作流程包括检索变更需求、结构化增强信息、生成可执行代码三大步骤,并提供需求变更免疫、智能风险预测等优势。落地时需注意文档结构化处理、检索权重策略等关键点。虽然存在文档质量依赖等局限,但RAG将测试开发从人工维护升级为AI驱动的自主迭代模式,释放工程师更高价值。
2025-05-26 20:03:03
506
原创 6类幻觉的实用指南:解决大模型幻觉问题
本文探讨了大语言模型(LLM)中六种常见的幻觉问题及其解决方案。通过使用1B参数的LLaMA小模型,展示了如何低成本解决:1)事实性错误可通过RAG技术纠正;2)时间错误可用时间感知提示重写查询;3)上下文问题可用LookbackLens回溯检测;4)语言问题通过语义相似度过滤;5)内在矛盾使用NLI模型检测;6)外在编造内容通过指针机制强制引用原文。实验证明,结合这些技术可显著提升小模型输出质量,为资源受限场景提供可行方案。
2025-05-26 18:14:46
796
原创 Coze教程:10分钟打造你的AI智能管家
AI智能体(Agent)是具备主动思考和行动能力的智能系统,能实现任务自动化,包含感知、记忆、规划决策和行动四大模块。相比普通AI仅提供信息,Agent能直接执行任务,如查询并预订机票。文章通过摘苹果的案例解析Agent框架,并介绍其在金融、零售等领域的应用前景。同时,文章手把手指导用户使用Coze平台10分钟创建专属智能体,包括工作流配置、节点设置等实操步骤,以旅游助手为例演示智能体开发全流程,帮助用户快速构建能自动执行复杂任务的AI助理。
2025-05-26 15:09:13
992
原创 一文看懂Transformer黑科技
如果把AI模型比作快递分拣中心,传统模型就像认真但死板的员工,必须按照顺序拆包裹、记信息、传包裹;而Transformer(变形金刚模型)则像开了天眼的智能分拣系统——它能瞬间看透所有包裹的联系,甚至知道第100号包裹和第3号包裹里装的是情侣款手机壳。现在,我们就用快递站的故事,揭开这项支撑ChatGPT、文心一言等AI的核心技术。
2025-05-25 20:02:23
928
原创 RAG分块策略全解析+ LlamaIndex代码演示
本文深入解析了RAG(检索增强生成)技术中的五种文档分块策略: 固定大小分块:简单高效但可能破坏语义完整性 语义分块:基于内容相关性划分,保持语义连贯性 递归分块:分层处理文档结构,兼顾灵活性与语义保持 基于文档结构分块:利用文档固有逻辑结构划分 LLM分块:借助大模型智能判断最佳分割点 文章通过LlamaIndex代码演示了各策略的实现方法,并对比分析了RAGFlow/Dify等框架的分块实践。作者建议企业根据具体需求选择分块策略:简单项目可选用集成框架,需深度定制则建议基于LlamaIndex自建方案,
2025-05-25 14:43:38
820
原创 破解RAG开发中的12大痛点与解决方案
本文系统分析了开发RAG管道时常见的12个痛点,包括7个来自学术研究的核心问题和5个实践中的挑战。针对内容缺失、文档检索失败、格式错误等关键问题,文章提出了包括提示优化、参数调优、重排序技术、输出解析等多种解决方案。特别介绍了处理复杂PDF数据、保障LLM安全性的创新方法,如EmbeddedTablesUnstructuredRetrieverPack和LlamaGuardModeratorPack。这些方案通过技术组合(如提示压缩与上下文重排序)和工具集成(如Pydantic程序与OpenAI JSON模
2025-05-25 11:03:35
728
原创 RAG知识库+DeepSeek落地实战:5大痛点全解析
企业AI落地RAG+本地知识库面临五大痛点:分块策略需动态适配工业文档结构;多源异构数据冷启动需分级索引;模型选型应平衡14B版本性价比;工艺参数需双因子加密防泄露;业务需求与技术实现需建立术语映射。建议分三步走:先用7B模型验证场景,再用14B攻坚复杂需求,最终向实时多模态演进。该方案可有效实现制造业经验数字化,在成本与效果间取得平衡。
2025-05-24 16:59:42
741
原创 解析RAG技术:提升AI问答系统精准度
本文深入解析了RAG(检索增强生成)技术,该技术通过检索外部知识库来增强生成式AI的回答准确性,解决传统模型存在的信息虚幻、知识局限等问题。文章详细介绍了RAG的5个核心流程:知识文档准备、嵌入模型处理、向量数据库存储、查询检索和生成回答,并提出了12项优化策略,包括数据清洗、分块处理、元数据标注、多级索引等。重点探讨了如何通过查询转换、高级检索策略和重排模型提升系统性能,最终指出合理选择大语言模型和开发框架是构建高效RAG系统的关键。RAG技术在企业知识管理等领域展现出巨大应用潜力。
2025-05-24 13:54:27
830
原创 一文看懂AI新物种:大模型、Agent、MCP、A2A
文章通过生活中的真实故事,解释了AI领域中的几个新概念:大模型、Agent、MCP和A2A。大模型如ChatGPT是被动的知识库,而Agent则是主动的、结果导向的,能够自主完成任务。MCP是多个Agent组成的协作网络,A2A则是Agent之间的直接协作。文章强调,知识库是Agent发挥价值的基础,个人知识库能够训练出更懂用户的专属Agent。面对AI革命,作者建议不要恐惧,开始构建个人知识库,并培养与AI协作的能力。文章旨在帮助读者理解这些AI新概念,并为未来做好准备。
2025-05-24 09:13:39
893
原创 优化文档预处理,释放RAG技术潜力
在人工智能领域,Retrieval-AugmentedGeneration(RAG)技术通过结合信息检索与文本生成,成为构建智能应用的关键。然而,实际应用中常遇到生成结果不准确或逻辑混乱的问题,主要原因是文档预处理质量不高。本文深入探讨了RAG技术的工作原理及其性能影响因素,强调了优化文档预处理流程的重要性,包括标准化文档结构、提升文本质量等。文章指出,文档格式杂乱、内容质量参差和语义不清晰是主要挑战,并提出了标准化预处理、规范化命名和特殊文档特殊处理等策略。此外,文章还讨论了知识图谱在结构化数据中的应用,
2025-05-23 17:10:06
612
原创 SFP与Unsloth:大模型微调技术全解析
大模型微调技术中,监督微调(SFT)和Unsloth是两种常见方法。SFT通过在预训练模型基础上使用标注数据进行训练,使模型适应特定任务,提升性能和控制输出。其关键要素包括预训练模型、监督数据、损失函数、优化器和微调策略。Unsloth则是一个开源项目,专注于加速和优化大语言模型的微调和推理,通过FlashAttention、4bit量化、LoRA等技术实现高效微调,降低内存占用,并支持主流开源模型。Unsloth与SFT可以结合使用,Unsloth提供加速和优化支持,而SFT则负责监督微调的具体实现。两者
2025-05-23 13:36:17
514
原创 解密大型语言模型:从概念到应用全解析
大型语言模型(LLM)是一种能够理解和生成人类语言的人工智能模型,通常包含数百亿参数,通过海量文本数据训练获得深层次语言理解能力。LLM能够执行多种任务,如回答问题、创作文本等。模型命名通常反映其架构、版本、参数规模或功能特性,如DeepSeek-V3、通义千问2.5-VL-32B等。LLM的核心概念包括Token(文本处理的最小单位)、参数(神经网络中的权重和偏置)、蒸馏(将大型模型压缩为小型模型的技术)、温度(控制生成文本随机性的参数)等。此外,RAG技术通过检索外部知识库增强LLM的准确性和可靠性,L
2025-05-23 09:07:46
1031
原创 分享一个能让知识库搭建效能直接起飞的方法
这里只是做了个简单示例,核心是通过工作流+提示词做数据清洗。实际上,要在生产中使用(企业交付),要比这个复杂很多倍,抛砖引玉,希望大家多思考,多实践,才有真正的认知。
2025-05-22 16:25:12
351
原创 揭秘LLM幻觉:1BLLaMA模型如何解决六大幻觉问题
本文探讨了大语言模型(LLM)中常见的幻觉问题及其解决方案。幻觉问题包括事实幻觉、时间幻觉、上下文幻觉、语言幻觉、外在幻觉和内在幻觉。针对这些问题,文章提出了多种技术手段,如使用RAG(检索增强生成)解决事实幻觉,通过时间感知提示纠正时间幻觉,利用LookbackLens检测上下文幻觉,采用语义连贯过滤处理语言幻觉,使用矛盾检测解决内在幻觉,以及通过复制/指针机制减少外在幻觉。文章以1B参数的LLaMA模型为例,展示了如何在小模型中应用这些技术,提升模型生成内容的准确性和可靠性。通过这些方法,可以在资源有限
2025-05-22 13:29:34
1075
原创 一文搞懂提示工程、微调 和 RAG的区别
在武侠比喻中,大模型被视为武林高手的内力心法,训练集则是各种门派的武功秘籍。提示词工程(PE)被比作用精准语言引导高手施展不同招式,微调(Fine-tuning)则像闭关修炼,让高手习得专精武学,而检索增强生成(RAG)则如同临阵查阅秘籍,实时应变。每种方法都有其优势和劣势:PE快速适应新任务但受限于模型已有知识,微调精度高但训练时间长,RAG灵活但需要额外检索时间。正经对比中,PE实现复杂度低,资源成本低,但受限于预训练知识;微调资源成本高,依赖高质量数据;RAG资源成本中等,依赖知识库质量,但能通过更新
2025-05-22 11:02:10
823
原创 大白话浅谈Agent
大语言模型如ChatGPT在自然语言理解和知识丰富度上表现出色,但其主要局限在于缺乏与现实世界的交互能力,导致其潜力无法完全发挥。为解决这一问题,研究人员提出了Agent框架,它是一个能够自主理解、规划决策并执行复杂任务的系统。Agent通过结合大语言模型、规划能力、工具和记忆,能够更好地适应不同环境和任务的要求,如从获取指令到实际执行任务的全过程。Agent的存在形式多样,包括纯数字型、与现实场景结合型以及具备身体的机器人。随着人工智能技术的发展,Agent展示了AI逻辑自洽和服务于垂直场景的能力,预示着
2025-05-21 18:26:44
1117
原创 机器学习超参数调优:提升模型性能的关键
超参数调优是机器学习中提升模型性能的关键步骤,涉及选择最佳的超参数组合。超参数是在模型训练前手动设置的,不同于通过数据学习得到的参数。常见的调优方法包括网格搜索、随机搜索和贝叶斯优化。网格搜索通过遍历所有可能的超参数组合来找到最佳配置,计算开销大但简单易实现。随机搜索则从超参数空间中随机选择组合,计算成本较低但可能错过最优解。贝叶斯优化利用贝叶斯定理和高斯过程,智能选择超参数组合,适合计算资源有限的情况,但实现复杂。选择合适的超参数调优方法能显著提升模型性能,避免过拟合或欠拟合。
2025-05-21 13:38:16
1145
原创 从零到GPT:大语言模型训练全解析
本文详细介绍了从零开始训练大语言模型的全过程,主要包括四个阶段:预训练、指令微调、奖励模型和强化学习。预训练阶段通过大规模无监督文本数据,让模型学习语言的基本规律和结构,为后续任务打下基础。指令微调阶段通过监督学习,使模型在特定任务上表现更优。奖励模型阶段通过人类反馈,评估模型输出质量,指导模型生成更符合人类偏好的内容。强化学习阶段结合人类反馈,进一步优化模型行为,使其输出更加自然和符合用户期望。整个过程涉及复杂的技术和数据处理,每个阶段的优化都对最终模型性能至关重要。
2025-05-21 09:22:18
1263
原创 神经网络与深度学习:从基础到突破
本文概述了神经网络和深度学习的基本概念、历史及其应用。神经网络,受人类大脑结构启发,由互连的神经元组成,通过多层结构处理复杂的模式识别任务。深度学习作为神经网络的一个子集,利用多层网络处理大数据,广泛应用于图像识别、语音识别和自然语言处理等领域。文章还回顾了深度学习的发展历史,从1943年首次提出的人工神经元模型到现代复杂的网络架构,如卷积神经网络和循环神经网络,展示了深度学习在人工智能领域的重要进展和突破。
2025-05-20 19:51:42
842
原创 机器学习、深度学习,大模型之间的关系?
人工智能(AI)技术中的机器学习、深度学习和大模型是相互关联的概念。机器学习是获取模型的一种方法,而深度学习是机器学习的一个子集,专注于使用深度神经网络进行建模。大模型,如语言或图像大模型,通常基于深度学习技术构建。在实际应用中,大模型可以直接解决某些问题,但在其他情况下,可能需要调整模型参数或选择更适合的机器学习方法。重要的是,选择AI技术时应考虑其与业务需求的匹配度,而不是盲目追求大模型技术。理解这些技术的关系和适用场景,有助于更有效地应用AI解决实际问题。
2025-05-20 19:14:08
1013
原创 大白话讲透RAG、LangChain、Agent 如何协同作战
就是战场指挥官,具备战略规划、战术执行、实时决策和战后复盘的能力。它不仅能调用各种武器系统(工具),还能根据战况动态调整作战方案。则是特种部队训练营,提供标准化训练体系(开发框架),让不同兵种(模块)能够高效协同作战。它既培养狙击手(RAG),也训练通信兵(Memory),最终组成特战小队(AI 应用)。相当于情报分析部门,能从海量非结构化数据(作战地图、敌情报告)中快速提取关键信息,为指挥官决策提供实时情报支持。
2025-05-20 09:03:47
368
原创 用一张图逐步为你拆解Transformer
在Acquired播客中,英伟达讨论了Transformer模型,这是GPT中的关键组件,也是21世纪的重要发明之一。Transformer通过掩蔽Token和注意力机制来预测下一个单词,广泛应用于语言模型和自动翻译。尽管Transformer的概念看似简单,但其内部机制复杂,涉及多头注意力、损失计算等细节。通过实际构建和训练一个小型Transformer模型,作者深入理解了其工作原理,包括如何防止模型在训练中“作弊”,以及如何通过编码器和解码器生成翻译。Transformer的优雅和高效使其成为现代自然语
2025-05-19 22:12:31
1145
原创 一文带你搞清楚AI Agent 八大核心概念
文章介绍了智能体(Agent)及其相关技术概念。智能体是能独立行动以实现特定目标的AI实体,如AI面试官,但存在准确性问题和幻觉现象。多智能体系统(Multi-Agent System)通过多个智能体协作提高效率,如智能交通系统。RAG(Retrieval-Augmented Generation)通过检索外部知识库信息生成更准确的回答,适用于智能客服等场景。工作流(WorkFlow)通过固定任务执行步骤减轻智能体的幻觉问题,如订单处理。微调(Fine-Tuning)利用特定数据训练大模型,提升其在特定行业
2025-05-19 20:42:45
762
原创 探索词向量:从One-Hot到Word2Vec的演变
本文介绍了两种词向量表示方法:基于离散的词向量表示和基于分布式的词向量表示。基于离散的方法包括One-Hot编码、词袋模型和TF-IDF,这些方法简单但存在词表维度膨胀和数据稀疏等问题。基于分布式的词向量表示方法如CBOW和Skip-Gram,通过考虑上下文关系,减少了维度并提高了速度,但无法解决多义词问题。WordEmbedding使用浮点型稠密向量表示词向量,通过将单词转换为数字再转换为向量实现。文章还提供了使用Python和PyTorch实现词向量表示的代码示例。
2025-05-19 16:24:48
390
原创 多模态RAG:三大组件揭秘未来搜索技术
多模态检索系统主要由检索器、重排序器和精炼器三个关键组件构成。检索器负责从单模态或跨模态数据中提取信息,包括单/双流结构和生成式结构,分别用于处理文本、图像、视频和音频等不同模态的检索任务。重排序器则对初步检索结果进行优化,通过微调或提示策略提高相关性评分,确保检索结果的准确性。精炼器进一步优化检索和重排序后的信息,通过摘要、蒸馏或上下文化等方法,将内容浓缩为更易于理解和操作的格式,提升大型语言模型生成响应的连贯性和准确性。这些组件共同协作,实现了高效、精准的多模态信息检索。
2025-05-18 20:29:11
1056
原创 Agent:AI的智能小脑与双手
Agent,中文名为智能体,是AI系统中负责执行复杂任务的关键组件。与大型语言模型(LLM)相比,Agent更像人类的小脑和双手,能够拆解任务并逐一完成,使AI的输出更加精准和可控。Agent的核心功能包括工作流管理、数据库存储、向量库知识检索、外部API调用以及触发器设置。通过工作流,Agent可以将复杂任务分解为多个步骤,并通过循环和判断机制优化结果。例如,设计一个长租公寓推销AI时,可以通过工作流控制LLM的回答和评分,最终输出最佳答案。Agent的应用不仅提高了AI的精准度,还通过数据积累和自省机制
2025-05-17 21:56:20
963
原创 KAG赋能,知识图谱提速,智能问答更快更准!
知识图谱在智能问答系统中扮演着关键角色,它通过有序整合海量知识,帮助大模型快速理解并精准回答用户问题。传统知识图谱构建依赖人工标注,存在效率低、主观性强和修正成本高等问题。KAG(知识增强生成)技术的引入,通过大模型的语言理解能力和逻辑推理,实现了全自动化的文本知识图谱抽取,显著提升了构建效率和准确性。KAG技术不仅将知识图谱构建周期从数周缩短至数天,还消除了人工标注的主观偏差,使得智能问答系统能够提供更及时、精准的回复。金现代公司通过KAG技术,显著提升了其智能问答平台小金智问®的效能,使其在处理各类问答
2025-05-16 18:54:06
480
原创 MCP协议:AI大模型的万能接口
MCP(Model Context Protocol,模型上下文协议)是由Anthropic公司于2024年11月推出的一种开放标准协议,旨在统一大型语言模型(LLM)与外部数据源和工具之间的通信方式。MCP的核心目标是解决AI应用开发中的数据孤岛和碎片化集成问题,提供一种标准化的方法,使AI模型能够与不同的数据源和工具无缝交互。MCP采用客户端-服务器架构,包含Host、Client和Server三个核心组件,通过标准化的协议实现AI模型与外部资源的连接和交互。MCP的优势在于打破数据孤岛、支持双向动态交
2025-05-16 18:28:22
1089
原创 AI Agent 深度十问:从原理到实战的认知通关指南
近期 OpenAI 发布了《A Practical Guide to Building Agents》电子书[1],随后 Langchain 负责人驳斥了电子书中的一些观点,在官方博客发布了《How to think about agent frameworks》[2]。在一次夜聊中,受到同事亦盏的启发:新兴技术领域往往会经历事实标准的争夺,是模型往上,还是编排框架向下,时间才能给出答案,但作为行业从业者,不妨从中举一反三,甄别对自己有价值的信息。本文通过提取并梳理以上两篇文章中的技术术语和价值信息,并
2025-05-16 17:14:09
786
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人