斐波那契数列

一、递归

已知斐波那契数列 Fn​=Fn−1​+Fn−2​(n>=3),F1​=1,F2​=1 用递归的方法求解该数列的第n项。

输入格式:

输入一个正整数n (1<=n<=40)。

输出格式:

输出一个数,数列的第n项

输入样例1:

1

结尾无空行

输出样例1:

1

结尾无空行

输入样例2:

3

结尾无空行

输出样例2:

2

结尾无空行

 答案:

#include <bits/stdc++.h>
using namespace std;
int myfunction(int n)
{
    if (n <= 2)
        return 1;
    else
        return myfunction(n - 1) + myfunction(n - 2);
}
int main()
{
    int n;
    cin >> n;
    cout << myfunction(n);
    return 0;
}

因为所输入的正整数的范围是1~40,所以利用递归而占用的时间与空间都在所承受范围之内。

二、循环

已知斐波那契数列 Fn​=Fn−1​+Fn−2​(n>=3),F1​=1,F2​=1

求解该数列的第n项,结果对998244353取模。

输入格式:

输入一个正整数n (1<=n<=10000000)。

输出格式:

输出一个数,数列的第n项

输入样例1:

1

结尾无空行

输出样例1:

1

结尾无空行

输入样例2:

3

结尾无空行

输出样例2:

2

结尾无空行

 答案:

#include <bits/stdc++.h>
using namespace std;
int myfunction(int n)
{
    if (n <= 2)
        return 1;
    else
    {
        int x = 1, y = 1, z, i;
        for (i = 3; i <= n; i++)
        {
            z = (x + y) % 998244353;
            x = y;
            y = z;
        }
        return z;
    }
}
int main()
{
    int n;
    cin >> n;
    cout << myfunction(n);
    return 0;
}

递归算法都可以用循环语句来表示,当问题规模过大时,递归所占用的内存空间会越来越多(不断地去申请新的递归函数内的局部变量),最终有可能导致空间不足而出现计算错误,所以当问题规模过大时,我们最好采用循环语句来解决问题。

三、矩阵快速幂

已知斐波那契数列 Fn​=Fn−1​+Fn−2​(n>=3),F1​=1,F2​=1

求解该数列的第n项,结果对998244353取模。

提示:矩阵快速幂,unsigned long long的最大值:1844674407370955161(1.8e18)

输入格式:

输入一个正整数n (1<=n<=1e18)。

输出格式:

输出一个数,数列的第n项

输入样例1:

1

结尾无空行

输出样例1:

1

结尾无空行

输入样例2:

3

结尾无空行

输出样例2:

2

结尾无空行

 答案:

#include <bits/stdc++.h>
using namespace std;
#define ull unsigned long long
#define m 998244353
typedef struct matrix
{
    ull node[2][2];
} ma;
ma chengfa(ma a, ma b)
{
    ma c;
    int i, j, k;
    for (i = 0; i < 2; i++)
        for (j = 0; j < 2; j++)
        {
            c.node[i][j] = 0;
            for (k = 0; k < 2; k++)
            {
                c.node[i][j] += a.node[i][k] * b.node[k][j];
                c.node[i][j] %= m;
            }
        }
    return c;
}
ma jzksm(ull n, ma x)
{
    ma y;
    y.node[0][0] = 1;
    y.node[0][1] = 0;
    y.node[1][0] = 0;
    y.node[1][1] = 1;
    while (n)
    {
        if (n & 1)
            y = chengfa(y, x);
        x = chengfa(x, x);
        n >>= 1;
    }
    return y;
}
int main()
{
    ull n;
    cin >> n;
    if (n < 3)
        cout << 1;
    else
    {
        ma x;
        x.node[0][0] = 1;
        x.node[0][1] = 1;
        x.node[1][0] = 1;
        x.node[1][1] = 0;
        x = jzksm(n - 2, x);
        cout << (x.node[0][0] + x.node[0][1]) % m;
    }
    return 0;
}

当问题规模再次变大之后,如果依然使用简单的for循环来解决问题,那么所消费的时间会是很长的。

总结:

快速幂与慢速幂

1、快速幂

快速幂用来求一个大数的大数次方,如果指数太大,for遍历时间复杂度为O(n),快速幂为O(logn)。

#define ull unsigned long long
ull ksm(ull x, ull n)
{
    ull ans = 1;
    while (n)
    {
        if (n & 1)
            ans *= x;
        x *= x;
        n >>= 1;
    }
    return ans;
}

 2、慢速幂

慢速幂用来求两个大数的乘法。和快速幂比较相似,只不过是把乘法换成了加法。

#define ull unsigned long long
ull msm(ull x, ull n)
{
    ull ans = 0;
    while (n)
    {
        if (n & 1)
            ans += x;
        x += x;
        n >>= 1;
    }
    return ans;
}

 3、混合用

当快速幂中的底数也是大数的时候,在进行乘法运算时可能会出现超出ull范围的情况,这个时候就需要快速幂和慢速幂相结合。

#define ull unsigned long long
ull msm(ull x, ull n)
{
    ull ans = 0;
    while (n)
    {
        if (n & 1)
            ans += x;
        x += x;
        n >>= 1;
    }
    return ans;
}
ull ksm(ull x, ull n)
{
    ull ans = 1;
    while (n)
    {
        if (n & 1)
            ans = msm(ans, x);
        x = msm(x, x);
        n >>= 1;
    }
    return ans;
}

 快速幂与矩阵快速幂

上面说到快速幂是求一个数的n次幂(当n为大数时),那么不难理解,矩阵快速幂就是求矩阵的n次幂(当n为大数时)。需要做出变化的是矩阵的乘法需要我们自己去写函数来实现,矩阵这种特殊的数据类型需要我们自己来定义,其他的只需要照搬快速幂就好了。

#define ull unsigned long long
#define scale 100 //规模自己设定 但是矩阵一定是方阵
typedef struct matrix
{
    ull node[scale][scale];
} ma;
ma chengfa(ma a, ma b)
{
    ma c;
    int i, j, k;
    for (i = 0; i < scale; i++)
        for (j = 0; j < scale; j++)
        {
            c.node[i][j] = 0;
            for (k = 0; k < scale; k++)
                c.node[i][j] += a.node[i][k] * b.node[k][j];
        }
    return c;
}
ma ksm(ma x, ull n)
{
    ma ans;
    int i, j;
    for (i = 0; i < scale; i++)
        for (j = 0; j < scale; j++)
        {
            if (i == j)
                ans.node[i][j] = 1;
            else
                ans.node[i][j] = 0;
        }
    //单位矩阵
    while (n)
    {
        if (n & 1)
            ans = chengfa(ans, x);
        x = chengfa(x, x);
        n >>= 1;
    }
    return ans;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

罗马尼亚硬拉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值