19、数据降维与可视化:PCA与MDS的应用

数据降维与可视化:PCA与MDS的应用

1. 无监督学习与主成分分析(PCA)

1.1 无监督学习概述

在数据处理中,我们之前的工作大多基于预测任务,即有已知正确答案的训练样本,这种学习方式被称为监督学习。然而,很多时候我们希望在没有答案参考的情况下发现数据结构,这就是无监督学习。例如,当面对包含大量列的数据表时,我们可能希望进行降维操作,将其转换为列数较少的表,这样能让数据集更易于理解,尽管会损失一些信息,但在探索新数据集时,这种对数据理解的提升往往是很有价值的。

1.2 股票市场数据降维

以股票市场数据为例,我们有从2002年1月2日到2011年5月25日期间25只股票的历史价格数据,如下表所示:

Date ADC AFL UTR
2002-01-02 17.7 23.78 39.34
2002-01-03 16.14 23.52 39.49
内容概要:本文围绕在双母线系统中使用STATCOM进行无功补偿的技术方案展开,重点介绍了基于PI控制器的STATCOM控制系统设计Simulink仿真实现。文章详在双母线系统中使用STATCOM进行无功补偿,STATCOM的控制器基于PI控制器(Simulink仿真实现)细阐述了STATCOM的工作原理及其在提升电力系统电压稳定性、改善电能质量方面的关键作用,并通过构建双母线系统仿真模型验证了PI控制器对无功功率动态调节的有效性。文中涵盖了系统建模、控制器设计、参数整定及仿真结果分析等环节,展示了STATCOM在负载突变或系统扰动情况下快速响应无功需求、持母线电压稳定的能力。; 适合人群:电力系统自动化、电气工程及相关专业的高校师生,从事电力电子无功补偿技术研究的科研人员,以及具备一定MATLAB/Simulink仿真基础的工程技术人员。; 使用场景及目标:①掌握STATCOM在电力系统中的无功补偿机制;②学习PI控制器在电力电子装置中的应用方法;③通过Simulink搭建双母线系统仿真模型,理解系统动态响应特性;④为实际工程项目中无功补偿装置的设计优化提供理论依据和技术参考。; 阅读建议:建议读者结合MATLAB/Simulink软件动手复现文中仿真模型,重点关注PI控制器参数调节对系统性能的影响,并尝试对比不同工况下的仿真结果,以深化对STATCOM控制策略的理解。同时可延伸学习先进控制算法(如模糊PID、自适应控制)在STATCOM中的应用,进一步提升系统控制精度鲁棒性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值