数据降维与可视化:PCA与MDS的应用
1. 无监督学习与主成分分析(PCA)
1.1 无监督学习概述
在数据处理中,我们之前的工作大多基于预测任务,即有已知正确答案的训练样本,这种学习方式被称为监督学习。然而,很多时候我们希望在没有答案参考的情况下发现数据结构,这就是无监督学习。例如,当面对包含大量列的数据表时,我们可能希望进行降维操作,将其转换为列数较少的表,这样能让数据集更易于理解,尽管会损失一些信息,但在探索新数据集时,这种对数据理解的提升往往是很有价值的。
1.2 股票市场数据降维
以股票市场数据为例,我们有从2002年1月2日到2011年5月25日期间25只股票的历史价格数据,如下表所示:
| Date | ADC | AFL | … | UTR | 
|---|---|---|---|---|
| 2002-01-02 | 17.7 | 23.78 | … | 39.34 | 
| 2002-01-03 | 16.14 | 23.52 | … | 39.49 | 
| … | … | … | 
 
                       
                             
                         
                             
                             
                           
                           
                             超级会员免费看
超级会员免费看
                                         
                   订阅专栏 解锁全文
                订阅专栏 解锁全文
                 
             
       
           
                 
                 
                 
                 
                 
                
               
                 
                 
                 
                 
                
               
                 
                 扫一扫
扫一扫
                     
              
             
                   22
					22
					
 被折叠的  条评论
		 为什么被折叠?
被折叠的  条评论
		 为什么被折叠?
		 
		  到【灌水乐园】发言
到【灌水乐园】发言                                
		 
		 
    
   
    
   
             
            


 
            