动态规划比较简单,略
地址:https://leetcode-cn.com/problems/fei-bo-na-qi-shu-lie-lcof/
描述:
写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项(即 F(N))。斐波那契数列的定义如下:
F(0) = 0, F(1) = 1
F(N) = F(N - 1) + F(N - 2), 其中 N > 1.
斐波那契数列由 0 和 1 开始,之后的斐波那契数就是由之前的两数相加而得出。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
实例1:
输入:n = 2
输出:1
实例2:
输入:n = 5
输出:5
思路:
方法一的时间复杂度是 O(n)O(n)。使用矩阵快速幂的方法可以降低时间复杂度。
首先我们可以构建这样一个递推关系:
时间复杂度:O(logn)。
空间复杂度:O(1)。
答案:
class Solution {
public int fib(int n) {
//矩阵快速幂
if (n < 2) {
return n;
}
//定义乘积底数
int[][] base = {{1, 1}, {1, 0}};
//定义幂次
int power = n - 1;
int[][] ans = calc(base, power);
//按照公式,返回的是两行一列矩阵的第一个数
return ans[0][0];
}
//定义函数,求底数为 base 幂次为 power 的结果
public int[][] calc(int[][] base, int power) {
//定义变量,存储计算结果,此次定义为单位阵
int[][] res = {{1, 0}, {0, 1}};
//可以一直对幂次进行整除
while (power > 0) {
//1.若为奇数,需多乘一次 base
//2.若power除到1,乘积后得到res
//此处使用位运算在于效率高,等价于power % 2 == 1
if ((power & 1) == 1) {
res = mul(res, base);
}
//不管幂次是奇还是偶,整除的结果是一样的如 5/2 和 4/2
//此处使用位运算在于效率高,等价于power = power / 2
power = power >> 1;
base = mul(base, base);
}
return res;
}
//定义函数,求二维矩阵:两矩阵 a, b 的乘积
public int[][] mul(int[][] a, int[][] b) {
int[][] c = new int[2][2];
for (int i = 0; i < 2; i++) {
for (int j = 0; j < 2; j++) {
//矩阵乘积对应关系,自己举例演算一遍便可找到规律
c[i][j] = (int) (((long) a[i][0] * b[0][j] + (long) a[i][1] * b[1][j]) % 1000000007);
}
}
return c;
}
}