剑指 Offer 10- I. 斐波那契数列

动态规划比较简单,略

地址https://leetcode-cn.com/problems/fei-bo-na-qi-shu-lie-lcof/
描述
写一个函数,输入 n ,求斐波那契(Fibonacci)数列的第 n 项(即 F(N))。斐波那契数列的定义如下:

F(0) = 0, F(1) = 1
F(N) = F(N - 1) + F(N - 2), 其中 N > 1.
斐波那契数列由 0 和 1 开始,之后的斐波那契数就是由之前的两数相加而得出。

答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。

实例1

输入:n = 2
输出:1

实例2

输入:n = 5
输出:5

思路
方法一的时间复杂度是 O(n)O(n)。使用矩阵快速幂的方法可以降低时间复杂度。
首先我们可以构建这样一个递推关系:
在这里插入图片描述
时间复杂度:O(logn)。
空间复杂度:O(1)。

答案

class Solution {
    public int fib(int n) {
        //矩阵快速幂
        if (n < 2) {
            return n;
        }
        //定义乘积底数
        int[][] base = {{1, 1}, {1, 0}};
        //定义幂次
        int power = n - 1;
        int[][] ans = calc(base, power);
        //按照公式,返回的是两行一列矩阵的第一个数
        return ans[0][0];
    }

    //定义函数,求底数为 base 幂次为 power 的结果
    public int[][] calc(int[][] base, int power) {
        //定义变量,存储计算结果,此次定义为单位阵
        int[][] res = {{1, 0}, {0, 1}};

        //可以一直对幂次进行整除
        while (power > 0) {
            //1.若为奇数,需多乘一次 base
            //2.若power除到1,乘积后得到res
            //此处使用位运算在于效率高,等价于power % 2 == 1
            if ((power & 1) == 1) {
                res = mul(res, base);
            }
            //不管幂次是奇还是偶,整除的结果是一样的如 5/2 和 4/2
            //此处使用位运算在于效率高,等价于power = power / 2
            power = power >> 1;
            base = mul(base, base);
        }
        return res;
    }

    //定义函数,求二维矩阵:两矩阵 a, b 的乘积
    public int[][] mul(int[][] a, int[][] b) {
        int[][] c = new int[2][2];
        for (int i = 0; i < 2; i++) {
            for (int j = 0; j < 2; j++) {
                //矩阵乘积对应关系,自己举例演算一遍便可找到规律
                c[i][j] = (int) (((long) a[i][0] * b[0][j] + (long) a[i][1] * b[1][j]) % 1000000007);
            }
        }
        return c;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值