YARN
文章平均质量分 92
张包峰
Distributed Computing
展开
-
分析资源管理系统的演变: 从Mesos,YARN再到Google Omega
我觉得资源管理器所要处理的问题无外乎几块:资源分配的策略,资源分配的粒度,资源分配的方式,不同类型任务的调度等。看了Google新一代资源管理器Omega的论文之后,对比Mesos和YARN总结了下面一些内容。 其实Google的Omega的实现是很类似于双层调度器的,只是省略了第一层,或者说是进化掉了这第一层,把它变成了一个全局可访问和修改的状态维护起来,增大了并发性。实际意义上的调度器们就类似于双层调度器里的第二层,可以实现自己的调度策略,可以遵循自己的分配方式去执行Task。个人认为增量的分配模式的确原创 2014-03-15 17:40:22 · 10830 阅读 · 0 评论 -
Spark on Yarn: Cluster模式Scheduler实现
背景 主体逻辑 具体实现 AM YarnAllocator Executor背景Spark on Yarn分yarn-cluster和yarn-client两种模式。 本文通过Cluster模式的TaskScheduler实现入手,梳理一遍spark on yarn的大致实现逻辑。 前提我对两种模式以及yarn任务的整体运行逻辑不是很清楚。 主体逻辑cluster模式中,使用的TaskSche原创 2015-02-15 17:52:43 · 4063 阅读 · 0 评论