Pytorch文档翻译
文章平均质量分 83
两米长弦
~~~~~~
展开
-
【Pytorch】Pytorch文档学习2:DATASETS & DATALOADERS
Pytorch提供了两种数据原语:torch.utils.data.DataLoader和torch.utils.data.Dataset,这两种数据原语允许你使用预载的数据集和你自己的数据。Dataset存储了数据的样本和他们的标签,而DataLoader封装了Dataset作为一个迭代器,从而使访问这些样例变得容易。PyTorch的域库提供了一些预载的数据集(比如FashionMNIST),这些数据集被放在torch.utils.data.Dataset中,并且对这些特定的数据提供了一些函数。翻译 2023-08-31 11:29:51 · 79 阅读 · 0 评论 -
【Pytorch】Pytorch文档学习6:OPTIMIZING MODEL PARAMETERS
现在我们拥有了模型和数据,是时候开始在我们的数据上通过优化他们的参数来对我们的模型进行训练,测试和验证了。训练模型是一个迭代的过程;在每一次迭代过程中,模型将会预测输出,计算预测输出的偏差(loss),收集各个参数的误差导数(正如我们在之前章节所见的那样),并使用梯度下降优化这些参数。翻译 2023-09-10 08:34:04 · 169 阅读 · 0 评论 -
【Pytorch】Pytorch文档学习1:Tensors
Tensors 是非类似于NumPy的ndarrays,除了tensor能偶运行在GPU和其他硬件计算器上以外。事实上,tensors和NumPy数组通常能够共享相同潜在的内存,从而消除复制数据的需要。如果你熟悉ndarrays,那么你使用Tensor API的时候就像回到家一般亲切。如果不熟悉,那么跟紧(以下教程)就对了。Tensor是一种特殊的数据类型,这种数据类型非常类似于数组和矩阵。在Pytorch中,我们使用tensors去对模型的输入和输出,以及模型的参数进行编码。翻译 2023-08-30 09:50:13 · 74 阅读 · 0 评论 -
【Pytorch】Tutorials个人翻译集合
本文记录Pytorch Tutorials文档的翻译文章集合。原创 2023-09-02 20:34:01 · 509 阅读 · 1 评论 -
【Pytorch】Pytorch文档学习5:AUTOMATIC DIFFERENTIATION WITH TORCH.AUTOGRAD
当训练神经网络的时候,最常用的算法就是反向传播。在该算法中,参数(模型的权重)是根据loss function对于给定的参数的梯度进行调整的。为了计算这些梯度,Pytorch内置了微分引擎,被叫做torch.autograd。其支持对于任意计算图的自动计算。翻译 2023-09-07 19:38:44 · 146 阅读 · 0 评论