理论逻辑梳理:傅里叶变换到频域
(幅度项不需关注,除非在项目实现中)(时域等效自变量t,连续离散只针对t变量)
一般形式:
连续非周期 连续非周期
连续周期 离散非周期
离散非周期 连续周期
离散周期 离散周期
默认常识:
有限长时间等效周期
周期无限长等效非周期
连续信号:
模拟信号--取有限长--连续周期信号--正交分解--频域傅里叶级数--三角函数形式/指数形式--
周期取无限长--连续非周期信号--傅里叶变换
离散信号(序列)(仿真实用):
(至此上述连续信号理论皆为后续离散信号处理做理论支撑和理论推导)
模拟信号--取有限长--连续周期信号--时域采样定理--离散周期信号--离散傅里叶级数(离散傅里叶变换)--周期趋于无限长--离散非周期信号--离散时间傅里叶变换(傅里叶变换)
DFT整体表现为对DTFT的N点等间隔采样
仿真实用:
DFT的循环卷积定理:循环卷积完成线性卷积计算
DFT对连续信号处理:采样定理决定了变换到频域是以Fs为周期进行周期延拓,
DFT(FFT)的限制,Fs针对频域上的限制