python程序设计实验报告:
一.使用集合实现筛选法求素数
1.实验名称:
使用集合实现筛选法求素数
2.实验目的:
1、理解求解素数的筛选法原理。
2、理解 Python 集合对象的 discard()方法。
3、熟练运用列表推导式。
4、理解 for 循环工作原理。
3.实验原理:
输入一个大于 2 的自然数,输出小于该数字的所有素数组成的集合。
4.仪器与材料:
PC机,pycharm。
5.实验步骤(代码):
def su(limit):
# 创建一个空集合,用于存储素数
primes = set()
# 创建一个布尔数组,用于标记每个数是否是素数
is_prime = [True] * (limit + 1)
# 从2开始,遍历到sqrt(limit)的每个数
for num in range(2, int(limit ** 0.5) + 1):
# 如果当前数是素数
if is_prime[num]:
# 将其添加到素数集合
primes.add(num)
# 将当前素数的倍数标记为非素数
for multiple in range(num * num, limit + 1, num):
is_prime[multiple] = False
# 处理sqrt(limit)+1到limit的每个数
for num in range(int(limit ** 0.5) + 1, limit + 1):
# 如果当前数是素数
if is_prime[num]:
# 将其添加到素数集合
primes.add(num)
# 返回素数集合
return primes
# 输入一个上限值
limit = int(input("请输入一个上限值: "))
# 获取素数集合
prime_set = su(limit)
# 输出在区间 [2, limit] 内的素数
print(f"在区间 [2, {limit}] 内的素数有:{prime_set}")
6.问题即讨论
这个代码使用了集合 primes 来存储素数,并使用布尔数组 is_prime 来标记每个数是否是素数。它首先遍历从 2 到 根号limit的每个数,如果当前数是素数,则将其添加到集合中,并标记其倍数为非素数。接着,遍历 根号limit+1 到 limit 的每个数,将素数添加到集合中。
7.运行结果

4236

被折叠的 条评论
为什么被折叠?



