B树和B+树

目录

一、BST树到AVL树到B树的简介

1.1  BST树 --- 二叉排序树

1.2 AVL树 --- 平衡二叉树

1.3  B树 --- 平衡多路查找树

1.3.1  B树的查找结点过程

1.3.2  B树的添加结点过程(和结点分裂过程)

1.3.3 B树的删除结点过程

二、B+树

2.1  B树和B+树



一、BST树到AVL树到B树的简介


1.1  BST树 --- 二叉排序树


特点:

1. 根节点的值大于其左子树中任意一个节点的值

2. 根结点的值小于其右节点中任意一节点的值

3. 这一规则适用于二叉查找树中的每一个节点。

好处:

查询的时间复杂度比链表快,链表的查询时间复杂度是O(n),二叉排序树平均是O(logn)。二叉排序树越平衡,越能模拟二分法,所以越能想二分法的查询的时间复杂度O(logn)。

二叉排序树如下图:

不足:

但是BST树有一个不足的地方,就是如果插入的结点的值的顺序,是越来越小或者越来越大的,那么BST就会退化为一条链表,那么其查询的时间复杂度就会降为O(n)。

如下图:

1.2 AVL树 --- 平衡二叉树



由于BST树存在上述的不足,所以AVL树就出来了。

特点:

1. 拥有BST树的特点:根节点的值大于其左子树中任意一个节点的值,小于其右节点中任意一节点的值,这一规则适用于二叉查找树中的每一个节点。

2. AVL树上任意结点的左、右子树的高度差最大为1。

由于AVL树的第二个特点,使得,AVL树的形状肯定不会退化成一条链表的,而是“矮胖”型的树。所以能确保AVL的查找、添加、删除的时间复杂度都是O(logn)。

1.3  B树 --- 平衡多路查找树


B树和AVL树(平衡二叉树) 的差别就是 B树 属于多叉树,又名平衡多路查找树,即一个结点的查找路径不止左、右两个,而是有多个。数据库索引技术里大量使用者B树和B+树的数据结构。一个结点存储多个值(索引)。

B树的阶数:M阶表示 一个B树的结最多有多少个查找路径(即这个结点有多少个子节点)。M=M路,M=2是二叉树,M=3则是三叉树。

一棵M阶B树有以下特点。

特点:

1.   每个结点的值(索引) 都是按递增次序排列存放的,并遵循左小右大原则。

2.  根结点 的 子节点 个数为 [2,M]。

3. 除 根结点 以外 的 非叶子结点 的子节点个数 为[ Math.ceil(M/2),M]。 Math.ceil() 为向上取整。

4. 每个 非叶子结点 的值(索引) 个数 = 子节点个数 -1 。最小为 Math.ceil(M/2)-1   最大为 M-1 个。

5. B树的所有叶子结点都位于同一层。

下图是一个 3阶B树:

可以看到:

1. 除 根结点 外,所有  非叶子结点  都至少有 M/2 = 1.5 取整 = 2 个结点。

2. 每个 结点中 的索引值 都是从小到大排序的。

3. 所有叶子结点都在同一层中。

1.3.1  B树的查找结点过程


从上述的 3阶B树 中,查找 结点5 的过程:

(1) 第一次读IO,把9的结点读到内存,再与目标数5比较,5是小于9的,因此往9的左边走。 

(2) 第二次读IO,还是把结点读到内存中,然后比较结点中的2和6与目标值5。发现5是大于2小于6的,因此往中间路径走。

(3)第三次读IO,还是把结点读到内存中,然后发现结点中有5,因此找到目标值。

好处:

1. 在数据库查询中,以树存储数据。树有多少层,就意味着要读多少次磁盘IO。

所以树的高度越矮,就意味着查询数据时,需要读IO的次数就越少。(众所周知,读IO是一件费事的操作)

当数据量大的时候,用AVL树存的话,就算AVL是平衡树,但是也扛不住数据量大,数据量大,AVL树的树高肯定很高,那么读取数据的IO次数也会多。那么有没有办法能压缩AVL树的树高呢?这时候B树就出来了。B树的一个结点可以装多个值,读取时,是把整个结点读到内存,然后在内存中,对结点的值进行处理,在内存中处理速度肯定比磁盘快。所以只要树的高度低,IO少,就能够提升查询效率,这是B树的好处之一。

2. B树的每一个结点都包含key(索引值) 和 value(对应数据),因此方位离根结点近的元素会更快速。(相对于B+树)

1.3.2  B树的添加结点过程(和结点分裂过程)


下面以 5阶B树为例:

(a)在空树中插入39:

此时根结点只有一个索引值。

(b)继续插入22,97和41:

根结点此时有4个索引值。

(c)继续插入53:

此时已经超过了最大允许的索引个数4,即4个。所以以其中心(41)分裂。结果如下图所示:

(d)然后在上图的基础上,再依次插入13,21,40,那么41所在结点的左子结点里的值就为13、21、22、39、40,一共五个,所以会以22为中心进行分裂,结果如下图所示:

分裂的中心22会进位到上一层的结点中。

(e)再在上图的基础上,插入30,27,33,那么其中有一个结点内的值为27、30、33、39、40,那么就会以33为中心引起一次分裂。

然后再插入36,35,34,那么就又会有一个结点内的值为34、35、36、39、40,那么就会以36为中心分裂。

然后再插入24、29,如下图所示:

此时拥有24、27、29、30的结点只要再插入一个索引值,就又会发生分裂。

(f) 插入26

插入26后,结点以27为中心分裂,并且27进位到上一层父结点中。

(g)27进位到父节点后,父节点里的索引值也超过了4个,因此也要分裂,分裂后如下:

27进位后的B树:

根结点分裂后的B树:

1.3.3 B树的删除结点过程


(a)原始状态

(b)再上图的树中,删除21

由于删除21后的结点的索引值个数仍然大于2(Math.ceil( 5/2 ) -1 =2),因此删除结束。

(c)接着删除27

从上图可知,由于27是非叶子结点,所以要删除27的话,需要用27的后继替代它。从上图可以看出,27的后继是28,因此我们用28来替代27,再删除原来的28,如下图:

删除后发现,当前结点(当前结点如上图所示)的索引值个数小于2个,而它的兄弟结点有3个索引值(当前结点还有一个右兄弟,选择右兄弟的话,会出现合并结点的情况,不论选哪一个都可以,只是最后的B树形态会不一样而已),那么就向左兄弟借一个索引值,注意这里的借并非直接从左兄弟结点处拿一个索引值过来,如果是这样的话,就破坏了B树父节点左子树比根结点小,右子树比根结点大的特性了。借是 把当前结点的父节点的28下移,然后把左兄弟结点的26上移到父节点,删除结束。如下图:

(d)在上述情况接着删除32:如下图

在删除32后,当前结点剩下31,即索引值数目小于2。这时候,它的兄弟结点,也仅仅有2个索引值,所以不能向兄弟结点借。

那只能够让父结点下移一个值(30),并和兄弟结合合并成一个新的结点,如下图:

当前结点的索引值个数不小于2 (Math.ceil( 5/2 ) -1 =2),满足条件,删除结束。

(e)接着删除 40:

删除40后,如下图所示:

当前结点由于索引值小于2,因此需要像父结点借,父结点下移36到当前结点,然后和兄弟结点合并(选择左兄弟或右兄弟都可以,这里我选择了左兄弟),如下图:

但这时候发现,新的当前结点的索引值个数又小于2了,那么只能向其父结点借了,所以其父结点下移33,然后当前结点和其兄弟结点合并,如下图:

删除结束。

二、B+树


2.1  B树和B+树


B+树是基于B树的基础提出的。

下图是一棵 4阶B+树:

在这里插入图片描述

m阶B+树定义
B+树是B树的一种变形形式,m阶B+树满足以下条件:

(1) 每个结点至多有m个孩子。

(2) 除根节点和叶结点外,每个结点至少有(m+1)/2个孩子。

(3) 如果根节点不为空,根结点至少有两个孩子。

(4) 所有叶子结点增加一个链指针,所有关键字都在叶子结点出现。

(5) 除了叶节点,结点的孩子数目等于关键字数目。 注意,B+树中非叶子结点存储的不是关键字数据的地址,而是指向叶子结点中关键字的索引。(所以任何关键字的查找必须走一条从根结点到叶子结点的路)

非叶子结点的子树指针P[i],指向关键字值属于[K[i], K[i+1])的子树(B-树是开区间)

B+树和B树最大的不同是:

B+树内部有两种结点,一种是索引结点,一种是叶子结点。
B+树的索引结点并不会保存记录,只用于索引,所有的数据都保存在B+树的叶子结点中。而B树则是所有结点都会保存数据。
B+树的叶子结点都会被连成一条链表。叶子本身按索引值的大小从小到大进行排序。即这条链表是 从小到大的。多了条链表方便范围查找数据。
B树的所有索引值是不会重复的,而B+树 非叶子结点的索引值 最终一定会全部出现在 叶子结点中。

优点


为什么要有B+树:

要说明这个问题,首先要从B树的好处和不足出发。

B树好处:

B树的每一个结点都包含key(索引值) 和 value(对应数据),因此方位离根结点近的元素会更快速。(相对于B+树)

B树的不足:

不利于范围查找(区间查找),如果要找 0~100的索引值,那么B树需要多次从根结点开始逐个查找。

而B+树由于叶子结点都有链表,且链表是以从小到大的顺序排好序的,因此可以直接通过遍历链表实现范围查找。


B+树的层级更少:相较于B树B+每个非叶子节点存储的关键字数更多,树的层级更少所以查询数据更快;

B+树查询速度更稳定:B+所有关键字数据地址都存在叶子节点上,所以每次查找的次数都相同所以查询速度要比B树更稳定;

B+树天然具备排序功能:B+树所有的叶子节点数据构成了一个有序链表,在查询大小区间的数据时候更方便,数据紧密性很高,缓存的命中率也会比B树高。

B+树全节点遍历更快:B+树遍历整棵树只需要遍历所有的叶子节点即可,而不需要像B树一样需要对每一层进行遍历,这有利于数据库做全表扫描。

能够保持数据稳定有序,其插入与修改拥有较稳定的对数时间复杂度

适应场景
通常用于数据库和操作系统的文件系统中。

结点的分裂
将已满结点进行分裂,将已满节点后M/2节点生成一个新节点,将新节点的第一个元素指向父节点。

父节点出现已满,将父节点继续分裂。

一直分裂,如果根节点已满,则需要分类根节点,此时树的高度增加。


 

B+树经典面试题

  • InnoDB一棵B+树可以存放多少行数据?
  • 为什么索引结构默认使用B+树,而不是hash,二叉树,红黑树,B-树?
  • B-树和B+树的区别

InnoDB一棵B+树可以存放多少行数据?

这个问题的简单回答是:约2千万行。

  • 在计算机中,磁盘存储数据最小单元是扇区,一个扇区的大小是512字节。
  • 文件系统中,最小单位是块,一个块大小就是4k;
  • InnoDB存储引擎最小储存单元是页,一页大小就是16k。

因为B+树叶子存的是数据,内部节点存的是键值+指针。索引组织表通过非叶子节点的二分查找法以及指针确定数据在哪个页中,进而再去数据页中找到需要的数据;

 

 

 

 

 

假设B+树的高度为2的话,即有一个根结点和若干个叶子结点。这棵B+树的存放总记录数为=根结点指针数*单个叶子节点记录行数。

  • 如果一行记录的数据大小为1k,那么单个叶子节点可以存的记录数 =16k/1k =16.
  • 非叶子节点内存放多少指针呢?我们假设主键ID为bigint类型,长度为8字节,而指针大小在InnoDB源码中设置为6字节,所以就是8+6=14字节,16k/14B =16*1024B/14B = 1170

因此,一棵高度为2的B+树,能存放1170 * 16=18720条这样的数据记录。同理一棵高度为3的B+树,能存放1170 *1170 *16 =21902400,也就是说,可以存放两千万左右的记录。B+树高度一般为1-3层,已经满足千万级别的数据存储。

为什么索引结构默认使用B+树,而不是B-Tree,Hash哈希,二叉树,红黑树?

简单版回答如下:

  • Hash哈希,只适合等值查询,不适合范围查询。
  • 一般二叉树,可能会特殊化为一个链表,相当于全表扫描。
  • 红黑树,是一种特化的平衡二叉树,MySQL 数据量很大的时候,索引的体积也会很大,内存放不下的而从磁盘读取,树的层次太高的话,读取磁盘的次数就多了。
  • B-Tree,叶子节点和非叶子节点都保存数据,相同的数据量,B+树更爱矮壮,也是就说,相同的数据量,B+树数据结构,查询磁盘的次数会更少。

B-树和B+树的区别

  • B-树内部节点是保存数据的;而B+树内部节点是不保存数据的,只作索引作用,它的叶子节点才保存数据。
  • B+树相邻的叶子节点之间是通过链表指针连起来的,B-树却不是。
  • 查找过程中,B-树在找到具体的数值以后就结束,而B+树则需要通过索引找到叶子结点中的数据才结束
  • B-树中任何一个关键字出现且只出现在一个结点中,而B+树可以出现多次。

 

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值