LLM安全风险及应对

LLM安全风险主要从四个维度分析:用户输入训练数据模型本身以及工具和插件

风险类别 具体风险 风险解释 应对措施 具体举例
用户输入相关风险 提示注入(Prompt Injection) 攻击者通过设计特定输入,使模型生成恶意或不安全的输出。 - 对输入进行严格验证和过滤
- 限制模型权限,防止敏感信息泄露
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云上笛暮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值