LLM安全风险主要从四个维度分析:用户输入、训练数据、模型本身以及工具和插件。
风险类别 | 具体风险 | 风险解释 | 应对措施 | 具体举例 |
---|---|---|---|---|
用户输入相关风险 | 提示注入(Prompt Injection) | 攻击者通过设计特定输入,使模型生成恶意或不安全的输出。 | - 对输入进行严格验证和过滤 - 限制模型权限,防止敏感信息泄露 |
LLM安全风险主要从四个维度分析:用户输入、训练数据、模型本身以及工具和插件。
风险类别 | 具体风险 | 风险解释 | 应对措施 | 具体举例 |
---|---|---|---|---|
用户输入相关风险 | 提示注入(Prompt Injection) | 攻击者通过设计特定输入,使模型生成恶意或不安全的输出。 | - 对输入进行严格验证和过滤 - 限制模型权限,防止敏感信息泄露 |