- 博客(36)
- 收藏
- 关注
原创 构建强大AI代理的最佳开源工具
你无需采用 GitHub 上所有新的代理框架。只需专注于少数几个运行良好、集成清晰且能够满足你特定目标的框架即可。AI 代理开发的成功在于清晰度,而非复杂性。不妨将这份技术栈作为你的速查表。混合、搭配,构建出如今切实可行的方案——并非理论上,而是在实际生产中。
2025-05-14 22:03:58
706
原创 MCP、ACP 和 A2A傻傻分不清楚
如何把实时数据或外部资源(比如文件、数据库、API 结果)安全、结构化地送进大模型的"脑子"里。ACP 是 BeeAI 和 IBM 提出的协议,用于在本地或边缘环境中让多个 AI 代理相互通信和协作。它不依赖云,而是设计为本地优先、低延迟。由 Google 提出,A2A 是一种 Web 原生的开放协议,用来让不同平台、不同厂商的 AI 代理跨系统协作。可以理解为“代理之间的通用语言”。MCP:连接 AI 与外部工具和数据A2A:连接 AI 与其他 AI(跨平台、跨厂商)
2025-05-08 20:00:00
789
原创 MCP 入门指南
模型上下文协议 (MCP)是一种新的开放协议,它标准化了应用程序向 LLM 提供上下文和工具的方式。可以将其视为 AI 的通用连接器。MCP 作为 Cursor 的插件系统,允许您通过将其连接到各种数据源和工具来扩展 Agent 的功能。MCP 帮助您在 LLM 之上构建代理和复杂的工作流程。例如,Obsidian 的 MCP 服务器可帮助 AI 助手搜索和阅读 Obsidian 库中的笔记。您的 AI 代理现在可以:→ 通过 Gmail 发送电子邮件→ 在 Linear 中创建任务。
2025-05-07 20:34:50
722
原创 AI Agent开源技术栈
如果您是从头开始构建,请从这里开始。这些工具可以帮助您构建Agent的逻辑——做什么、何时做以及如何处理工具。您可以将其视为将原始语言模型转化为更自主的模型的核心大脑。一旦你的Agent能够规划,它就需要采取行动。此类别包含的工具可让你的Agent点击按钮、输入字段、抓取数据,并像人类一样控制应用或网站。如果您的Agent需要说话或聆听,这些工具可以处理音频方面的问题——将语音转换为文本,然后再转换为文本。非常适合免提用例或语音优先的座席。有些工具甚至足以胜任实时对话。
2025-04-29 22:29:08
656
原创 RAG 第九部分:针对 RAG 微调 LLM
文章中,我们重点介绍了与大型语言模型 (LLM) 集成的检索器组件,该组件用于检索有意义且真实的上下文知识,从而提升 LLM 输入的质量,并最终提升其生成的输出响应。与传统的微调不同,它仍然可能使用相对较大的数据集,并且通常在将 LLM 与 RAG 系统的其余部分集成之前完成,之后,将针对较小的数据集进行更有针对性、特定任务的微调。虽然在某些应用场景中,检索器提取相关的、最新的信息来构建准确的上下文的工作已经足够,不需要定期进行 LLM 再训练,但在更具体的情况下,这还不够。领域自适应预训练(DAP)
2025-04-29 21:53:05
880
原创 5 个开源 MCP 服务器
MCP 代表模型上下文协议。这是像 Claude 这样的 AI 与自身之外的东西(例如网站或代码笔记本)进行交流的一种方式。没有它,你的 AI 就只能靠猜测。有了它,就像说:“嘿,兄弟,帮我把 GitHub 的内容抓过来”。
2025-04-29 12:33:55
879
原创 第八部分:缓解 RAG 中的幻觉
这些策略可能有助于提高检索到的信息和上下文的相关性,从而使最终传递给生成器的提示能够提供坚实的上下文基础。如果检索到的文档包含错误、不精确的条目、过时的信息或偏见,生成器可能会给出误导性或不正确的响应。正如本系列的开篇所讨论的,RAG 系统相较于传统语言模型的主要优势之一是能够通过检索和整合事实准确的信息来减少幻觉,但幻觉仍然可能由于多种原因而产生。在我们理解 RAG 文章系列的新一期中,我们将探讨幻觉问题,与独立语言模型相比,它们在 RAG 系统中的表现如何,最重要的是,如何解决这个具有挑战性的问题。
2025-04-26 21:16:56
468
原创 第七部分:向量数据库和索引策略
简单来说,向量数据库是一种专门化的数据库,旨在优化存储和检索以高维向量形式表示的文本。为什么这些数据库对RAG至关重要?因为向量表示能够在大规模文档库中进行高效的基于相似性的搜索,根据用户查询快速检索相关信息。在向量数据库中,语义相似的文档具有更接近的向量表示。例如,与两个餐厅评论相关的向量会比和关于古典音乐的新闻文章相关的向量更加相似。同样,通过点积和余弦相似度等向量操作,可以高效地检索到包含与用户查询在语义上相关的文本的文档。理解向量数据库与传统数据库之间的区别非常重要。
2025-04-24 22:17:42
662
原创 理解RAG第六部分:有效的检索优化
每种策略都针对检索过程的不同方面,以确保生成更准确和相关的响应,并且它们都有助于缩小检索数据,以确定最相关和高质量的上下文片段,从而提高准确性和效率,尤其是在长上下文或专业RAG应用中。语义哈希专注于提高检索效率,通过将文档编码为哈希码(通常是紧凑的二进制向量),从而实现更快的基于相似度的检索。带有反馈循环的主动学习是一种交互式方法,它结合用户反馈,不断调整和改进检索结果,从而不断提升模型的检索准确率。当这种混合搜索机制的目标是根据相关性优化检索到的文档的排名时,我们会应用。1. 针对具体案例的优化。
2025-04-22 21:15:30
568
原创 理解RAG第五部分:管理上下文长度
上下文摘要是一种更高级的方法,用于管理RAG系统中的上下文长度,其中我们在构建最终上下文的过程中应用文本摘要技术。一种可能的方法是使用一个额外的语言模型——通常较小且针对摘要任务进行训练——来总结检索到的文档的大块内容。这种摘要任务可以是提取式或抽象式,前者识别并提取相关文本片段,后者从头开始生成一个摘要,重新表述并压缩原始片段。或者,一些RAG解决方案使用启发式方法来评估文本片段(例如,块)的相关性,丢弃不太相关的片段。策略概括文档分块。
2025-04-15 11:03:52
501
原创 理解 RAG 第四部分:RAGA 和其他评估框架
计算此分数的过程包括选择相关指标并计算它们,将它们标准化为在同一范围内移动(通常为 0-1),并计算指标的加权平均值。权重是根据每个用例的优先级分配的,例如,对于需要高度事实准确性的系统,您可能希望优先考虑忠实度而不是召回率。本文介绍并概述了 RAGA:这是一种流行的评估框架,用于从信息检索和文本生成的角度系统地衡量 RAG 系统性能的多个方面。它以最简单的方式成功评估了(即检索器和生成器)的性能——既可以单独评估,也可以作为单个管道联合评估。让我们来了解一下事物检索和生成方面的一些最常见的指标。
2025-03-20 22:07:56
922
原创 了解 RAG 第三部分:混合检索和重新排序
融合检索方法涉及在 RAG 系统的检索阶段融合或聚合多个信息流。回想一下,在检索阶段,检索器(信息检索引擎)获取 LLM 的原始用户查询,将其编码为矢量数值表示,并使用它在庞大的知识库中搜索与查询高度匹配的文档。之后,通过添加从检索到的文档中产生的额外上下文信息来增强原始查询,最后将增强的输入发送给 LLM。通过在检索阶段应用融合方案,在原始查询之上添加的上下文可以变得更加连贯和上下文相关,从而进一步改善 LLM 生成的最终响应。
2025-03-20 12:21:51
418
原创 如何使用AI自动生成令人惊叹的网站设计
AI 可以帮助设计师更快、更高效地工作,但只有人类才能带来真正的创意和独特的思维。人工智能可以提高生产力,而设计师则可以专注于创造力、同理心和打造有意义的用户体验。最近领导让搞一个UI设计,我是做过开发,也做过产品,UI就是没做过,知识略懂一二,AI的到来给了我们这些略懂一二的人一些机会,尝试了一些探索供大家学习研究。“为 SaaS 产品创建一个简洁的主页,其中包含主要的功能如下。“面向科技初创公司的未来主义、简约的网站设计、深色模式、科技装饰。“SaaS 网站主页的现代渐变风格背景,平滑的色彩过渡。
2025-03-01 22:38:21
2290
原创 了解 RAG 第二部分:经典 RAG 的工作原理
在本系列的第一篇文章中,我们介绍了检索增强生成 (RAG) ,解释了扩展传统大型语言模型 (LLM)功能的必要性。我们还简要概述了 RAG 的核心思想:从外部知识库检索上下文相关的信息,以确保 LLM 生成准确且最新的信息,而不会产生幻觉,也不需要不断地重新训练模型。本系列的第二篇文章揭秘了传统 RAG 系统运行的机制。尽管如今随着人工智能的迅猛发展,许多增强版和更复杂的 RAG 版本几乎每天都在不断涌现,但要了解最新的先进 RAG 方法,第一步是先理解经典的 RAG 工作流程。经典 RAG 工作流程。
2025-02-23 21:15:00
957
原创 了解 RAG 第一部分:为什么需要它
通过这种方式,LLM 全面学习人类语言的细微差别,模仿我们的交流方式,并利用学到的知识产生自己的“类人语言”,从而实现前所未有的流畅的人机交流。原因是:LLM对世界的了解仅限于他们接触的数据,特别是在训练阶段。例如,早期 ChatGPT 模型中幻觉的发生率估计约为 15%,这对使用这些模型的组织的声誉产生了深远的影响,并损害了整个 AI 系统的可靠性和信任度。更糟糕的是,当 LLM 缺乏提供准确、相关或真实答案的基础信息时,他们仍有可能生成看似令人信服的答案,即使这意味着完全基于虚构的信息来制定答案。
2025-02-18 21:58:31
537
原创 Adobe 的新 AI 视频生成器令人难以置信
但我想这是一种很好的方式来显示自己的美德,并且在道德上优于 Midjourney 和 OpenAI 等深陷诉讼的竞争对手,哈哈。照这样发展下去,视频证据很快就无法在法庭上站得住脚了——他们会直接说这是深度伪造的,谁知道呢?即使 Sora 等其他工具制作的视频质量会稍好一些,但所有创作工具的深度集成仍将为它们带来巨大的优势。他们知道,人工智能工具的价值不仅在于它有多好,还在于它与便捷和熟悉的工作流程的深度融合。然后,您仍然可以通过文本提示从头开始创建新的视频,从而精确控制风格和摄像机角度……
2025-02-17 23:05:16
374
原创 DeepSeek的未来:多模式代理人工智能
什么是多模式代理AI?多模式代理人工智能能够改变游戏规则走在前沿的OpenAI 的 GPT-4o和Meta ChameleonGPT-4o:能够理解并采取行动的人工智能**场景 1:规划完美假期****场景 2:增强你的工作项目**Meta 的变色龙:适应您的需求**场景 1:学习新技能****场景 2:管理个人健康**DeepSeek刚发布了Janus-Pro未来现实世界的应用:您将在哪里遇到多模式代理 AI人工智能 (AI) 不再局限于科幻小说——它已经成为我们日常生活的一部分。
2025-02-14 17:32:36
855
原创 如何在本地电脑上安装和使用 DeepSeek R-1
Deepseek R-1 被公布为一个完全开源模型,这意味着任何人都可以采用底层代码库,对其进行调整,甚至根据自己的需要进行微调。从技术角度来看,Deepseek R-1(通常缩写为 R1)源自一个名为 DeepSeek-V3 的大型基础模型。实验室随后通过对高质量人工标记数据进行监督微调 (SFT) 和强化学习 (RL) 相结合的方式完善了该模型。聊天机器人可以处理复杂的提示,揭示复杂问题背后的推理步骤(有时比其他模型更透明),甚至在聊天界面中呈现代码以便快速测试。
2025-02-03 13:52:19
1590
原创 AI编码助手的隐性成本:来自高级开发人员的见解
作为一名IT老兵,我亲眼目睹了开发工具的演变。GitHub Copilot,Cursor等工具预示着未来 AI 可以提高开发人员的工作效率,但在将其集成到我们的工作流程中一段时间后,我发现了一些隐性成本。以下是我对 AI 辅助编码如何影响软件开发的看法。
2025-01-12 19:31:05
570
原创 我的机器学习之旅:适合初学者的完美路线图
在处理更复杂的项目(例如处理文本、图像或识别复杂模式)时,您会迫切地想要探索应用机器学习的深度学习方面。到目前为止,我所有的学习都是来自我做的项目,而不仅仅是理论知识。完成实际项目并交付成果帮助我深刻理解理论,证明了以项目为先的方法是将理论转化为现实的关键。我最擅长的学习方式是出于需要。这种“边学边做”的方法让我的旅程变得实用,并专注于我的职业目标。这种“先代码,后理论”的方法帮助我以实践、动手的方式学习 ML。建立个人项目至关重要,但不要止步于此——部署它们,衡量它们的成功,如果可能的话,将它们公开。
2024-12-31 22:31:29
1004
原创 Next.js 还是选择vite
Web 开发框架的格局在不断发展,开发人员经常权衡各种选择,以找到最适合其项目的工具。Next.js一个基于 React 的框架,它改变了服务器端渲染 (SSR) 和静态站点生成 (SSG) 的游戏规则。然而,随着技术的成熟,其生态系统也带来了一些挑战。
2024-12-17 18:45:17
1750
原创 8种负载平衡类型
如果您正在深入研究 Web 基础设施,那么您可能听说过负载平衡。它就像互联网的交通警察,确保所有数据请求到达正确的地方而不会造成拥堵。在本文中,我们将分解一些流行的负载平衡技术,并向您展示如何使用 NGINX 设置它们。在评论中分享您最喜欢的负载平衡策略,并告诉我们它如何帮助您解决问题。
2024-12-12 14:14:45
797
原创 Bolt.new这会抢走许多应用程序开发人员的工作吗?
Bolt.new 承诺将通过简单的提示实现功能齐全的应用程序,从而彻底改变应用程序开发,无需代码。只是炒作,还是它真的可以让非开发人员甚至经验丰富的专业人士摆脱编码的困扰。让我们分析一下 Bolt.new 的突出之处以及它仍然存在的不足之处。
2024-11-28 14:57:38
1061
原创 github代码获取错误:Error in the HTTP2 framing layer
【代码】github代码获取错误:Error in the HTTP2 framing layer。
2024-11-07 15:55:23
1039
原创 Parallels Desktop 18 for Mac 真爽
Parallels Desktop 18 包含 20 多种强大的必备功能(针对 macOS Ventura、Intel 和 Apple M 系列芯片进行了优化),拥有提升性能所需的一切。面向最新的 Apple 硬件进行了优化 - 改进了与 Apple ProMotion 技术的兼容性,优化了 Mac 和 Windows 之间的同步。
2023-05-27 22:39:56
673
2
原创 什么是RLHF
*字面翻译:**RLHF (Reinforcement Learning from Human Feedback) ,即以强化学习方式依据人类反馈优化语言模型。强化学习从人类反馈(RLHF)是一种先进的AI系统训练方法,它将强化学习与人类反馈相结合。它是一种通过将人类训练师的智慧和经验纳入模型训练过程中,创建更健壮的学习过程的方法。该技术涉及使用人类反馈创建奖励信号,然后通过强化学习来改善模型的行为。
2023-05-11 15:47:49
13044
2
原创 AWS免费服务器申请
白票AWS服务器一年,不香吗!提示:这里对文章进行总结:例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。
2023-04-15 17:37:19
613
1
原创 SecureCRT 9.3.1 MAC版安装
1. 下载SecureCRT 9.3.1 MAC版本,我的事Intel的,记得下载对应的版本。1)打开终端 sudo spctl --master-disable。2. 将SecureCRT app拖到应用程序下。“xxx” 已损坏,打不开.您应该将它移到废纸篓。搞了一天天,找了半天,终于解决了!
2023-04-13 14:26:40
1810
3
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人