请点赞关注,你的支持对我意义重大。
🔥 Hi,我是小彭。本文已收录到 GitHub · AndroidFamily 中。这里有 Android 进阶成长知识体系,有志同道合的朋友。
前言
大家好,我是小彭。
在计算机面试中,逻辑类题目是规模以上互联网公司的必考题。由于题目花样百出,准备难度较大,题海战术可能不是推荐的做法。在这个系列里,我将精选十道非常经典的逻辑题,希望能帮助你找到解题思路 / 技巧。如果能帮上忙,请务必点赞加关注,这真的对我非常重要。
系列文章:
1. 问题描述
给定一台天平,至少要几个砝码,可以称出 1g ~ 40g 这 40 个重量?
这个问题等同于 “德·梅齐利亚克砝码”问题:一位商人有一个 40 磅的砝码,由于跌落在地而碎成4 块。后来,称得每块碎片的重量都是整磅数,而且可以用这 4 块来称从 1 ~ 40 磅之间的任意整数磅的重物。(引用自法国数学家 G.B.德·梅齐里亚克)问这 4 块砝码碎片各重多少?
2.解题关键
砝码的和与差: 假设有 m 和 n 两个砝码(m > n),除了可以称出 m + n 的重量外,还可以称出 m - n 的重量。
3. 题解
令 A x A_x Ax 表示第 x x x 块砝码的重量。
- 第 1 块砝码 A 1 A_1 A1:为了称取重量 1g ,必须拥有一枚重量为 1g 的砝码,即 A 1 A_1 A1 = 1。目前可以称 {1, 2, 3}。
- 第 2 块砝码 A 2 A_2 A2:砝码组 [ 1 , A 2 ] [1, A2] [1,A2],可以称出 { 1 , A 2 − 1 , A 2 , A 2 + 1 } \{1, A_2 - 1, A_2, A_2 + 1\} {1,A2−1,A2,A2+1}。为了称取重量 2g,显然有 A 2 A_2 A2 - 1 = 2,即 A 2 A_2 A2 = 3。目前可以称 {1, 2, 3, 4}。
- 第 3 块砝码 A 3 A_3 A3:砝码组 [ 1 , 3 , A 3 ] [1, 3, A3] [1,3,A3],可以称出 { 1 , 2 , 3 , 4 , A 3 − 4 , A 3 − 3 , A 3 − 2 , A 3 − 1 , A 3 , A 3 + 1 , A 3 + 2 , A 3 + 3 , A 3 + 4 } \{1, 2, 3, 4, A_3 - 4, A_3 - 3, A_3 - 2, A_3 - 1, A_3, A_3 + 1, A_3 + 2, A_3 + 3, A_3 + 4\} {1,2,3,4,A3−4,A3−3,A3−2,A3−1,A3,A3+1,A3+2,A3+3,A3+4}。为了称取重量 5g,显然有 A 3 A_3 A3 - 4 = 5,即 A 3 A_3 A3 = 9。目前可以称 {1, 2, 3, 4, …, 13}。
- 第 4 块砝码:同理,第 4 块砝码 A 4 A_4 A4 = 27,可以称出 { 1 , 2 , 3 , 4 , . . . , 40 } \{1, 2, 3, 4,..., 40\} {1,2,3,4,...,40}。总共需要 4 个砝码。
参考资料
- 《拜托,面试别再问我三进制了!!!》 —— 沈剑 著
- 《世界上最完美的砝码组合—神秘的“3”重现江湖!》 —— 隔壁家的二傻子 著