合唱团--java实现

有 n 个学生站成一排,每个学生有一个能力值,牛牛想从这 n 个学生中按照顺序选取 k 名学生,要求相邻两个学生的位置编号的差不超过 d,使得这k 个学生的能力值的乘积最大,你能返回最大的乘积吗?
输入描述:
每个输入包含 1 个测试用例。每个测试数据的第一行包含一个整数 n (1 <= n <= 50),表示学生的个数,接下来的一行,包含 n 个整数,按顺序表示每个学生的能力值 ai(-50 <= ai <= 50)。接下来的一行包含两个整数,k 和 d (1 <= k <= 10, 1 <= d <= 50)。
输出描述:
输出一行表示最大的乘积。
示例1

输入

3
7 4 7
2 50

输出

49
一般的动态规划题目,中间使用的表的最后一个元素,dp[N][K]就是所求的结果。但这个题目不能这样,因为如果那样建表,子问题就成了“在前n个学生中,取k个,使乘积最大”——然而,本题目有额外的限制条件“相邻两个学生的位置编号的差不超过d”就没有办法代入递推公式了,因为子问题中本身并不包含位置信息。
 
因此将子问题定为:在前n个学生中,取k个,第n个必取,使乘积最大。这样的话,最终的结果就不是dp[N][K],而是dp[..][K]这一列中最大的那个值。 
其次,求最大乘积比求最大和的问题要复杂许多。求最大和的话,子问题中也只需要求最大和就行了。但求最大乘积的时候,在子问题中,每一步需要求最大正积和最小负积。因为如果某学生的能力值为负数,乘以前面求得的最小负积,结果才是最大乘积。 

import java.util.Scanner;

public class HeChangTuan {
	public static void main(String[] args) {
		//键盘输入  
		/*
		int n=6;
		int[] nums={-7,4,5,2,-6,7};
		int k=3;
		int d=4;
		 */
        Scanner scan = new Scanner(System.in);  
        int n = scan.nextInt(); //从键盘输入n值 
        int[] nums = new int[n];  
        for(int i = 0; i < n; i++){  
            nums[i] = scan.nextInt();//从键盘输入能力值  
        }  
        int k = scan.nextInt();//从键盘输入选取的人数
        int d = scan.nextInt();//从键盘输入误差范围
       
        long[][] max = new long[k][n];  
        long[][] min = new long[k][n];  
        for(int i = 0; i < k; i++)  
            for(int j = 0; j < n; j++){  //给二维数组赋初值
                max[i][j] = 1;  
                if(i == 0){  
                    min[i][j] = nums[j];  
                    max[i][j] = nums[j];
                }
              //  System.out.println("-------------------");
               // System.out.println(max[i][j]+"   "+min[i][j]);
            }  
  
        for(int i = 1; i < k; i++)  
            for(int j = 0; j < n; j++)  
                for(int m = 1; m <= d; m++){  
                    if(j - m >= 0){  
                        if(nums[j] > 0){  
                            min[i][j] = Math.min(min[i][j], min[i - 1][j - m] * nums[j]);  
                            max[i][j] = Math.max(max[i][j], max[i - 1][j - m] * nums[j]);  
                        } else{  
                            min[i][j] = Math.min(min[i][j], max[i - 1][j - m] * nums[j]);  
                            max[i][j] = Math.max(max[i][j], min[i - 1][j - m] * nums[j]);  
                        }  
                    }  
                }  
        long Max = 0;  
        for(int i = 0; i < n; i++){
        	//System.out.println(max[k - 1][i]);
        	//System.out.println(min[k - 1][i]);
            Max = Math.max(Max, max[k - 1][i]);
        }
        System.out.println(Max);  
	}

}
运行结果为

运行过程如下图:

具体步骤:
1、先声明两个两个二维数组max,min
2、对max、min赋初值如上图的右图;
3、在右图中,i控制行数,也即是选择人数;j控制列数,也即是能力值,m控制相邻两数的间距,通过从第一行开始比较,得出的最大值、最小值存到第二行,故i从1开始;
4、对于当前数是正数还是负数分为两种情况。当为正数时,只需要比较当前值与当前值前面的两两乘积,并与1进行比较,选最大的存到当前值下标对应的max表中,同理,最小值也是。公式如下:
min[i][j] = Math.min(min[i][j], max[i - 1][j - m] * nums[j]);
max[i][j] = Math.max(max[i][j], min[i - 1][j - m] * nums[j]); 

当为负数时,公式如下:
min[i][j] = Math.min(min[i][j], max[i - 1][j - m] * nums[j]);

 max[i][j] = Math.max(max[i][j], min[i - 1][j - m] * nums[j]); 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值