AI
文章平均质量分 87
enjoy编程
Stay hungry, stay foolish.(求知若饥,虚心若愚。)
15年+ Java 全栈与大数据架构老兵,兼具技术深度与业务视野
喜欢使用java、python解决工作、生活中的问题
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Spring-AI Agent Skills 赋予AI智能体“即插即用”的专业超能力 --II
Agent Skills已成为主流 Agent 开发工具和 IDE 支持的标准扩展规范Agent Skills 正在重新定义我们与 AI 的协作方式。它不再要求我们成为高明的 **“提示词巫师”**,而是鼓励我们成为**技能架构师**。通过将专业知识封装成标准化的 Skills,构建一个更加`模块化`、`高效且可靠`的 `AI 应用生态`。未来,一个强大的 AI 智能体,不再仅仅取决于它底层模型的大小,更取决于它装备了怎样一套强大的 **“技能工具箱”**。原创 2026-01-23 22:45:00 · 940 阅读 · 0 评论 -
Spring-AI Agent Skills 赋予AI智能体“即插即用”的专业超能力
Agent Skills 正在重新定义我们与 AI 的协作方式。它不再要求我们成为高明的 **“提示词巫师”**,而是鼓励我们成为**技能架构师**。通过将专业知识封装成标准化的 Skills,构建一个更加`模块化`、`高效且可靠`的 `AI 应用生态`。未来,一个强大的 AI 智能体,不再仅仅取决于它底层模型的大小,更取决于它装备了怎样一套强大的 **“技能工具箱”**。让我们一起学习并积累Agent Skill吧原创 2026-01-15 23:00:00 · 1237 阅读 · 0 评论 -
Spring-AI 脱离 IDE 的束缚:OpenCode 让 AI 开发回归终端本源
OpenCode是一个**专为现代开发者设计的、以终端为核心的 AI 编程协作者**。**总而言之,如果你是一位:** ● **重度终端用户**,厌恶在 IDE 和浏览器之间频繁切换; ● **对代码隐私有严格要求**,希望数据保留在本地; ● **追求极致性价比**,希望自由选择模型提供商; ● **渴望自动化**,希望 AI 能不仅仅是聊天,而是能通过脚本和工具帮你完成实际工作。那么,OpenCode 无疑是你工具箱中值得立刻尝试的“瑞士军刀”。原创 2026-01-13 22:45:00 · 2026 阅读 · 0 评论 -
Spring AI 从“工具助手”到“数字员工”的自动化演进
尽管大语言模型(LLM)在文本生成、逻辑推理等方面展现出强大能力,但其本质仍是非确定性系统。而企业的生产环境则高度依赖确定性、安全性与可追溯性。因此,真正的挑战不在于 “能不能做” ,而在于 “如何可靠地交付”。从企业AI落地的痛点与挑战,如何进行AI落地,如何让AI靠谱及AI落地建议方面,本文进行总结梳理。原创 2026-01-12 22:15:00 · 1122 阅读 · 0 评论 -
Spring AI 大模型工程核心:效率的极限博弈
大模型工程实践的本质,是对算力、显存与通信效率的极限压榨。其核心不仅在于算法模型本身,更在于底层系统工程的综合优化。通过注意力机制(如FlashAttention)降低计算复杂度;利用并行策略(3D并行)与PD/EPD分离,实现千卡级集群的高效协同;借助量化与缓存管理(PagedAttention),最大化硬件利用率。工程目标始终围绕 “降本” (降低算力与内存成本)与 “提效” (提升吞吐量、降低延迟),在有限资源下实现模型能力的极致释放。原创 2026-01-07 23:15:00 · 897 阅读 · 0 评论 -
Spring-AI 大模型未来:从“学会世界”到“进入世界”的范式跃迁
清华大学教授、智谱AI首席科学家唐杰在2025年末发表深度思考,指出当前大模型发展正面临从 **“认知智能”** 向 **“生产系统”** 的关键转折。他提出 **“领域大模型是伪命题”**、**“AI应用的第一性原理是替代工种”**,并预言**在线学习与自我评估将成为下一个Scaling范式**。本文结合其观点与公开技术趋势,深入分析预训练瓶颈、新范式演进路径及AI落地的核心逻辑。原创 2026-01-07 21:45:00 · 901 阅读 · 0 评论 -
Spring boot 4 : AI 时代工程师真正不可替代的能力是什么
**工程师** 需要 **以人为本,方能穿越技术周期**,在代码之外更懂得驾驭:**人际关系、政治博弈、目标对齐与组织灰度**这 21 条法则看似分散,实则围绕三个核心主题展开:- **保持好奇**:对用户、技术、世界的持续探索;- **保持谦逊**:承认局限,拥抱不确定性;- **以人为本**:无论是服务用户,还是协同队友,工作的终极对象始终是人。在 AI 日益强大的今天,机器可以写代码、画原型、生成文档,但它还无法真正理解人类的情感、动机与困境。而这,正是工程师不可替代的价值所在。原创 2026-01-06 23:00:00 · 1147 阅读 · 0 评论 -
Spring AI 深度重构 renren-security,基于 Java 21 虚拟线程打造极致高并发脚手架
renren-security 一直是我心中最优秀的轻量级 Java 快速开发平台之一。它基于 Spring Boot、Shiro 和 Vue3 构建,凭借“极低门槛、拿来即用”的特性,成为了无数开发者交付项目的利器。然而,随着 Spring Boot 4.0 的正式发布以及 Java 21 成为新的事实标准,原有技术栈在高并发、低延迟的现代应用需求下面临显著瓶颈。为了将这套经典的权限系统带入现代 Java 时代,基于 renren-security 5.5.0 版本,独自完成这次深度的技术重构原创 2025-12-24 19:30:00 · 908 阅读 · 0 评论 -
Spring-AI RAG 如何提高召回率?
在构建 RAG(检索增强生成)系统时,“召回率”(Recall)决定了系统能否从海量知识库中把“相关的资料”全都找出来。如果召回率低,哪怕你的大模型再厉害,也是“巧妇难为无米之炊”。本文针对RAG中如何提高召回率的理论 及落地实践进行详细讲解原创 2025-12-23 22:30:00 · 1885 阅读 · 0 评论 -
Spring-AI: AI大模型 就业岗位全景图,挑选适合自己的
大模型行业已经从早期的“百模大战”逐渐走向分层细化,不同岗位的技术壁垒、薪资天花板和职业前景差异巨大。为了让你更直观地了解这个生态,整理了一份 “难度从极高到低”的岗位全景图,并对核心岗位进行了详细拆解。原创 2025-12-23 19:30:00 · 965 阅读 · 0 评论 -
Spring Boot 4 & JAVA 21 学习--迁移指南 Migration Guide
作为 Spring Boot 3.x 之后的首个大版本更新,Spring Boot 4.0 基于 Spring Framework 7.0、Jakarta EE 11 和 Java 17+(推荐 Java 21 或 25),带来了模块化架构重构、虚拟线程原生支持、HTTP 服务客户端自动配置等重大变化。本文带你学习如何将项目迁移至Spring Boot 4原创 2025-12-21 21:20:08 · 653 阅读 · 1 评论 -
Spring-AI WebClient 和 RestClient 用法解读
在 Spring 生态(特别是 Spring 6+)中,WebClient 和 RestClient 都是用来发起 HTTP 请求的客户端工具,它们正在逐步取代老旧的 RestTemplate。简单来说,WebClient 是为了高性能和未来的响应式架构而生,而 RestClient 是为了让传统的同步代码写起来更优雅、更简洁。原创 2025-12-12 18:02:03 · 129 阅读 · 0 评论 -
Spring-AI Tool Calling 过程中字符串与对象间的转换
在 Spring AI 的 Tool Calling 过程中,字符串与对象之间的转换主要发生在数据进入 Java 方法之前(反序列化/入参转换)和数据返回给 LLM 之前(序列化/结果转换)两个阶段另外就是给LLM提供所能使用工具转换为 LLM 能识别的 `ToolDefinition` 对象原创 2025-12-08 17:58:53 · 791 阅读 · 0 评论 -
Spring-AI ETL Pipeline讲解
Spring AI 的 ETL(Extract, Transform, Load)框架是构建 RAG(检索增强生成)应用的核心组件,帮助你将原始数据(如 PDF、TXT、HTML 等)处理成 AI 模型可以理解的向量格式.提取、转换和加载(ETL)框架在检索增强生成(RAG)中充当数据处理的骨干.ETL管道编排从原始数据源到结构化向量存储的流,确保数据以最佳格式供AI模型检索。原创 2025-12-08 11:00:45 · 906 阅读 · 0 评论 -
Spring-AI 利用KeywordMetadataEnricher & SummaryMetadataEnricher 构建文本智能元数据
在构建基于Spring AI的RAG(检索增强生成)应用时,数据的质量直接决定了回答的智商。RAG时,不仅需要原始文本,还需要文本的上下文摘要或核心关键词来辅助检索和生成。Spring AI提供的ETL Pipeline模块中,KeywordMetadataEnricher和SummaryMetadataEnricher正是为此而生。它们利用大模型的能力,生成文件的核心关键词及摘要信息。原创 2025-12-07 15:37:45 · 429 阅读 · 0 评论 -
Spring-AI 利用Recursive Advisors如何构建可观察的循环处理链?
在构建AI应用时,常常需要让模型反复执行某些操作,比如以下操作:循环调用工具直到没有更多工具需要调用验证结构化输出并在验证失败时重试传统的做法是将这些逻辑写在模型内部,但这会让调试和监控变得困难。Spring AI的Recursive Advisor(递归Advisors)正是为了解决这个问题而设计的——它将这些循环逻辑移到了可观察、可拦截的Advisor链中,让AI应用的开发和调试更加透明和可控。原创 2025-12-07 09:54:46 · 745 阅读 · 0 评论 -
Spring-AI Advisors 体系框架与实战
在构建AI应用时,常常需要在模型调用前后执行一些`通用逻辑`,例如:记录日志、管理对话上下文、进行安全审查、或者注入额外的知识库信息。如果把这些逻辑都写在业务代码里,不仅会造成代码混乱,也难以复用和维护。Spring AI 框架提供了一个`优雅的解决方案——Advisors`。它借鉴了 Spring 经典的 `AOP(面向切面编程)思想`,让你可以像“插件”一样,将这些`横切关注点(Cross-Cutting Concerns)`从核心业务逻辑中剥离出来,实现高度`可扩展`和`可定制`的AI应用。原创 2025-12-06 23:11:38 · 565 阅读 · 0 评论 -
Spring-AI 如何玩转ChatClient?
在构建AI应用时,单一模型往往难以满足多样化的业务需求。Spring AI的ChatClient提供了优雅的解决方案,支持在同一应用中灵活使用多个ChatModel。ChatClient提供了一个fluent API 来与AI模型进行通信。它支持同步和流式编程模型。 将深入探讨如何在Spring Boot应用中配置和使用多个ChatModel,实现模型的动态选择与组合,如何深入使用ChatClient进行AI应用开发。原创 2025-12-06 13:15:37 · 761 阅读 · 0 评论 -
Spring-AI Moderation Model为何物?
Moderation Model 是一个专门用于**内容审核(Content Moderation)**的 AI 工具。它能自动分析你提供的文本,并判断其中是否包含违反其使用政策的敏感或有害内容。在当今这个用户生成内容(UGC)爆炸式增长的时代,从社交媒体评论到AI生成的回答,确保平台内容的合规与安全已成为开发者不可回避的责任。使用Moderation Model 可以方便的审核模型的输入和输出,识别有有害或敏感的内容。原创 2025-12-05 21:29:27 · 398 阅读 · 0 评论 -
Spring-AI Prompts详细解读
Prompt指导AI模型生成特定输出的输入。这些Prompt的设计和措辞显著影响模型的响应.投入时间和精力设计深思熟虑的Prompt可以极大地改善AI的结果.特别是随着人工智能技术的快速发展,如何最有效地利用Prompt是一个持续的挑战原创 2025-12-05 18:09:14 · 1007 阅读 · 0 评论 -
Spring-AI如何支持多模态输入
目前多模态LLM已经出现,如OpenAI’s GPT-4o , Google’s Vertex AI Gemini 1.5, Anthropic’s Claude3 和开源的Llama3.2。这些模型能接受多种输入,包括文本、图像、音频和视频,并通过整合这些输入生成文本响应**多模态**是指模型能够**同时理解和处理**来自各种来源的信息,包括文本、图像、音频和其他数据格式本文讲解Spring-AI如何支持多模态输入原创 2025-11-30 17:54:46 · 343 阅读 · 0 评论 -
Spring-AI 如何使用Structured Output Converter将LLM输出转换为结构化数据
为什么需要结构化输出?Spring AI结构化输出转换器帮助将LLM输出转换为结构化格式。- 下游应用程序需要llm生成结构化输出,以便于进行解析- 将llm生成结果快速转换为数据类型,如JSON、XML或Java类,这些数据类型可以传递给其他应用程序函数和方法原创 2025-11-29 23:24:37 · 1073 阅读 · 0 评论 -
Is AI stealing your creative spark?
人工智能是否偷走了你的创意火花?原创 2025-07-04 17:21:33 · 274 阅读 · 0 评论 -
如何构建一个提供LLM运行环境的镜像
如果想在本地搭建LLM的运行环境,使用镜像是一个很好的选择本文提供基于python 3.10版本,使用poetry管理依赖,快速搭建LLM运行环境的镜像的脚本。原创 2025-04-10 09:40:40 · 160 阅读 · 0 评论 -
AI Agent相关的设计图
LLM Agent 是一个基于大型语言模型的智能代理,能够执行复杂的任务。它通常结合了多种工具和API,以完成特定的目标。LLM Agent 可以根据上下文动态调整其行为,并且能够处理多步骤的任务。原创 2025-01-26 11:49:50 · 620 阅读 · 0 评论 -
2024年年终看LLM的发展方向
如今的大模型已经能够满足95%用户的需求,涵盖信息抽取、方案设计、表格生成、简单代码编写、简单问答、简单服务调用等领域,这95%的需求大多是简单任务,对模型的能力要求不高。因为大多数的用户日常并不需要模型具备复杂的逻辑推理能力。剩下5%涉及复杂逻辑推理的需求,隐藏着AGI的技术瓶颈,代表着以o1为典型的新技术范式,但需要投入天价的算力本文回顾2024年LLM的发展记录及针对2025年LLM发展方向的展望。原创 2024-12-31 18:10:23 · 1633 阅读 · 0 评论 -
如何构建一个提供nlp服务的镜像
本文介绍如何构建一个提供nlp服务的镜像,功能如下:基于hanlp 2.x、jionlp的基础采用fastapi封装NLP的相关服务原创 2024-09-04 18:18:12 · 673 阅读 · 0 评论 -
如何下载huggingface或modelscope上的大模型或数据集
如何下载huggingface或modelscope上的大模型或数据集原创 2024-08-17 19:14:52 · 3568 阅读 · 0 评论 -
hg transformers pipeline使用
在Hugging Face的transformers库中,pipeline是一个高级API,它提供了一种简便的方式来使用预训练模型进行各种NLP任务,比如情感分析、文本生成、翻译、问答等。通过pipeline,你可以在几行代码内实现复杂的NLP任务。pipeline会自动加载用于指定任务的默认模型和tokenizer,如果需要,用户也可以指定使用特定的模型和tokenizer在创建pipeline时,除了可以指定任务类型和模型外,还可以设置其他参数,详见本文原创 2024-08-17 18:33:06 · 963 阅读 · 0 评论 -
NLP专业术语及工具【hanlp、jiolp】
NLP专业术语及工具【hanlp、JioNLP】原创 2024-07-21 14:40:35 · 1196 阅读 · 0 评论 -
Gradio每个组件支持的事件,用于自查
Gradio每个组件支持的事件,用于自查原创 2024-05-02 11:28:51 · 290 阅读 · 0 评论 -
LLM--RAG中的文本切分策略及长上下文窗口是否会取代RAG?
在使用基于检索的生成模型(RAG)处理长文本数据时,合理的文本切割策略是提高模型性能和效率的关键。本文讲解文本切割相关的概念及技术要点。目前LLM模型进化的方向是增加上下文窗口的长度,主流LLM支持的上下文窗口长度越来越大,并且随着Infini-Transformer架构的出现,那么长上下文窗口是否会取代RAG?原创 2024-04-14 15:05:56 · 4342 阅读 · 0 评论 -
LLM-大模型演化分支树、GPT派发展阶段及训练流程图、Infini-Transformer说明
LLM-大模型演化分支树、GPT派发展阶段及训练流程图、Infini-Transformer说明原创 2024-04-14 11:22:56 · 1954 阅读 · 0 评论 -
LLM-在CPU环境下如何运行ChatGLM-6B
ChatGLM-6B-INT4 是 ChatGLM-6B 量化后的模型权重。具体的,ChatGLM-6B-INT4 对 ChatGLM-6B 中的 28 个 GLM Block 进行了 INT4 量化,没有对 Embedding 和 LM Head 进行量化。量化后的模型理论上 6G 显存(使用 CPU 即内存)即可推理,具有在嵌入式设备(如树莓派)上运行的可能。在 CPU 上运行时,会根据硬件自动编译 CPU Kernel ,请确保已安装 GCC 和 OpenMP (Linux一般已安装,对于Wind原创 2024-03-31 14:54:29 · 800 阅读 · 0 评论 -
LLM--使用Milvus向量数据库必须知道的基本概念
Milvus 是一款专为大规模向量相似度搜索而设计的开源向量数据库。它旨在高效、快速地处理高维向量数据,并支持实时、近似最近邻(Approximate Nearest Neighbor, ANN)检索,适用于各种涉及向量搜索的应用场景,如图像识别、语音识别、推荐系统、自然语言处理(NLP)等。本文介绍使用Milvus作为向量数据库时必须知道的基本概念原创 2024-03-31 10:01:16 · 959 阅读 · 0 评论 -
LLM--如何使用SentenceTransformer将文本向量化
将文本向量化是自然语言处理(NLP)中的一项关键步骤,其主要目的是将原本难以直接被计算机理解的自然语言文本转换成数值形式的向量,以便于后续的机器学习算法和深度学习模型进行处理、分析和建模本文介绍如何使用SentenceTransformer将文本向量化原创 2024-03-31 09:41:57 · 1583 阅读 · 0 评论 -
LLM--打造Private GPT需要知道的一些概念及术语
打造Private GPT需要知道的一些概念及术语原创 2024-03-31 09:19:15 · 1531 阅读 · 0 评论 -
LLM--提示词Propmt的概念、作用及如何设计提示词
一种用于`指导`人工智能(如聊天机器人或图像生成工具)`生成特定内容`的文字。**提示词**的设计旨在以一种`高效`、`精确`的方式向模型传达用户的`意图`或所需的`任务类型`,从而使模型想你所想。有关如何写好提示词,请学习[面向开发者的大模型手册 - LLM Cookbook](https://github.com/datawhalechina/llm-cookbook),设计高效 Prompt 的两个关键原则:**编写清晰、具体的指令**和**给予模型充足思考时间**原创 2024-03-31 08:41:25 · 8223 阅读 · 0 评论 -
Milvus 向量数据库:如何基于docker-compose在本地快速搭建测试环境
Milvus 向量数据库:如何基于docker-compose在本地快速搭建测试环境原创 2024-03-23 11:46:32 · 771 阅读 · 0 评论 -
Ollama 在本地快速启动并执行LLM【大语言模型】
Ollama 让你快速的在本地部署、启动并执行大语言模型Ollama makes it easy to get up and running with large language models locally.Get up and running with Llama 2, Mistral, Gemma, and other large language models.原创 2024-03-19 21:06:48 · 2991 阅读 · 0 评论
分享