机器学习
文章平均质量分 82
penzo
这个作者很懒,什么都没留下…
展开
-
主成分分析(PCA)原理详解
一、PCA简介1. 相关背景 在许多领域的研究与应用中,往往需要对反映事物的多个变量进行大量的观测,收集大量数据以便进行分析寻找规律。多变量大样本无疑会为研究和应用提供了丰富的信息,但也在一定程度上增加了数据采集的工作量,更重要的是在多数情况下,许多变量之间可能存在相关性,从而增加了问题分析的复杂性,同时对分析带来不便。如果分别对每个指标进行分析,分析往往是孤立的,而不是综合的。转载 2017-08-27 22:32:37 · 629 阅读 · 0 评论 -
不产生候选集的关联规则挖掘算法FP-Tree
上篇博客讲述了Apriori算法的思想和Java实现,http://blog.csdn.NET/u010498696/article/details/45641719 Apriori算法是经典的关联规则算法,但是如上篇博客所述,它也有两个致命的性能瓶颈,一个是频繁集自连接产生候选集这一步骤中可能产生大量的候选集;另一个是从候选集得到频繁项集需要重复扫描数据库。2000年,Han等提出了一个转载 2017-08-27 22:50:02 · 659 阅读 · 0 评论 -
关联规则挖掘基本概念与Aprior算法
关联规则挖掘在电商、零售、大气物理、生物医学已经有了广泛的应用,本篇文章将介绍一些基本知识和Aprori算法。 啤酒与尿布的故事已经成为了关联规则挖掘的经典案例,还有人专门出了一本书《啤酒与尿布》,虽然说这个故事是哈弗商学院杜撰出来的,但确实能很好的解释关联规则挖掘的原理。我们这里以一个超市购物篮迷你数据集来解释关联规则挖掘的基本概念:TIDItems转载 2017-08-27 22:52:38 · 853 阅读 · 0 评论