LangChain系列
文章平均质量分 94
LangChain系列
老蒋每日coding
曾任国内大厂及500强外企高级架构师,热爱技术,专注于区块链&AI技术落地融合应用的IT老兵。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
基于 Go 和 LangChain4J 的商品推荐系统架构及实现
这是一个现代化商品推荐系统,结合了传统机器学习推荐和基于 AI 的智能推荐。系统使用 Go 作为主要开发语言,LangChain4J 通过 Java 微服务提供 AI 能力。原创 2026-02-08 10:54:10 · 582 阅读 · 0 评论 -
LangChain 实战系列(一) —— 在 Windows 上安装 LangChain 的详细步骤
本文详细介绍了在Windows系统上安装LangChain的完整流程。主要内容包括:1) 环境要求(Python 3.8+、Windows 10+、8GB+内存);2) 安装步骤:从Python安装、创建虚拟环境,到安装LangChain核心及可选依赖(如OpenAI、向量数据库等);3) 开发环境配置建议(VSCode、环境变量管理);4) 常见问题解决方案(安装速度慢、权限错误等);5) 提供验证安装的测试脚本和快速入门示例。文章还推荐了后续学习方向,帮助用户快速开始LangChain开发。原创 2026-01-29 00:00:18 · 1496 阅读 · 0 评论 -
LangGraph:从入门到Multi-Agent超级智能体系统进阶开发
本文介绍了一个基于LangGraph的多智能体系统设计与实现案例。该系统包含多个专业化智能体,能够协作完成复杂任务。案例展示了从基础单智能体工作流到多智能体协作系统的完整开发过程,包括研究分析、战略规划、创意生成和质量审核等智能体的设计。特别演示了电商客服场景的应用,实现意图识别、产品咨询、订单查询等功能。系统还集成了高级特性如错误处理、限流机制和缓存系统,确保生产环境可靠性。通过模块化设计和条件路由机制,该系统展现了多智能体协作在自动化流程中的强大潜力,为构建企业级AI解决方案提供了实践参考。原创 2026-01-31 22:26:44 · 453 阅读 · 0 评论 -
多智能体系统工作流的设计模式与实现策略
摘要:多智能体系统工作流是由多个自主决策AI智能体通过结构化协作完成复杂任务的系统性过程。相比传统工作流,它具有动态自适应、智能协商和持续优化的优势。典型协作模式包括层级协调、市场协商、管道流水线和分布式自治等。设计框架需考虑智能体粒度、通信协议等关键因素,并通过评估指标和实时监控确保系统效能。实施路线图建议分三阶段推进,同时需防范技术、协调和安全等风险。成功的多智能体工作流设计需要系统思维,关注智能体间互动而非单个能力,建立持续优化的反馈机制。这种智能协作范式正在成为未来组织的重要竞争优势。原创 2026-01-31 20:10:38 · 485 阅读 · 0 评论 -
AI Agent 设计模式系列(二十一)—— 探索和发现设计模式
AI Agent 通常在预定义的知识范围内运行,限制了它们处理新情况或开放式问题的能力。在 复杂和动态的环境中,这种静态的、预编程的信息不足以实现真正的创新或发现。根本挑战是使 Agent 能够 超越简单的优化,主动寻求新信息并识别”未知的未知因素”。这需要从纯粹的被动行为转变为扩展系统自身理解和能力的主动 Agentic 探索。原创 2026-01-27 21:31:26 · 897 阅读 · 0 评论 -
AI Agent 设计模式系列(二十)—— 优先级排序设计模式
本文介绍了优先级排序模式在AIAgent中的应用,特别是在项目管理领域的实现案例。文章首先阐述了优先级排序模式的核心概念,指出该模式使Agent能够在资源受限的多目标环境中,根据紧急性、重要性、依赖关系等标准动态评估和排序任务。随后详细展示了一个基于LangChain4J开发的项目管理AIAgent案例,包括系统架构、数据模型定义、核心工具实现和RESTAPI设计。该Agent能够创建任务、智能计算优先级、分配团队成员,并生成分析报告。文章强调优先级排序是AgenticAI的基石,使系统能够自主决策并动态调原创 2026-01-26 21:38:01 · 1025 阅读 · 0 评论 -
【Java开发者转型AI必看】LangChain4j入门指南:轻松集成大语言模型到SpringBoot应用
本文介绍了一个基于SpringBoot集成LangChain4j大语言模型的完整Demo项目。项目构建了智能问答系统,支持对话、翻译、数学计算和代码解释等功能。详细展示了项目结构、配置方法(支持OpenAI和Ollama两种模型)、核心代码实现以及前端交互界面。通过AiServices的声明式API简化开发,提供RESTful接口和Web界面测试。项目采用模块化设计,包含配置层、服务层和控制层,可作为Java开发者快速集成AI能力的参考模板。原创 2026-01-25 19:28:12 · 1072 阅读 · 0 评论 -
AI Agent 设计模式系列(十九)—— 评估和监控模式
本文探讨了智能Agent评估与监控的系统化方法论,提出了一套涵盖性能跟踪、合规审计、异常检测等维度的完整框架。研究指出,传统测试方法已无法满足AI系统在动态环境中的评估需求,需要建立基于多指标、持续反馈的监控体系。通过引入"AI合约"概念,将模糊指令转化为可验证的正式协议,使Agent从概率性工具升级为可问责的"承包商"。文章还展示了实践代码示例,实现了七种核心监控功能。最终强调,这种结构化评估方法是确保AI系统在关键任务中可靠运行的基础。原创 2026-01-25 13:50:03 · 659 阅读 · 0 评论 -
AI Agent 设计模式系列(十八)—— 安全模式
防护栏的主要目的不是限制 Agent 的能力,而是确保其运行稳健、可靠且有益。它们作为安全措施和指导机 制,对构建负责任的 AI 系统、减轻风险以及通过确保可预测、安全和合规的行为来维护用户信任至关重要, 从而防止操纵并维护道德和法律标准。没有防护栏,AI 系统可能变得不受约束、不可预测且具有潜在危险。 为进一步缓解这些风险,可以使用计算密集度较低的模型作为快速额外保障,预先筛选输入或对主模型输出 进行双重检查,以发现策略违规。原创 2026-01-24 17:50:22 · 782 阅读 · 0 评论 -
AI Agent 设计模式系列(十七)—— 推理设计模式
摘要:高级推理机制通过结构化分析赋予智能体深度思考能力,使其能像人类一样逐步拆解复杂问题。不同于简单应答模式,该方法强调透明化的"思维链"展示,通过投入更多计算资源进行迭代分析、多路径探索和外部验证。虽然响应时间增加,但显著提升了逻辑推导、决策权衡等复杂任务的准确性。关键推理技术包括思维链(CoT)的逐步推导、思维树(ToT)的多路径探索、程序辅助模型(PALMs)的代码执行验证,以及多智能体协作框架(如CoD和GoD)。这些技术将智能体从快速应答者转变为能主动拆解问题、展示推理过程并进原创 2026-01-24 15:30:25 · 977 阅读 · 0 评论 -
AI Agent 设计模式系列(十六)—— 资源感知优化设计模式
摘要:资源感知优化使AI系统能够动态管理计算、时间和财务资源,在约束条件下实现最优性能。该技术通过智能权衡模型选择、延迟与精度平衡、故障回退等策略,使系统具备自适应能力。核心方法包括:1)基于任务复杂度路由请求;2)延迟敏感操作优化;3)能源效率管理;4)多Agent任务分配。实现方案展示了模型动态切换、批量处理优化、多级电源模式等关键技术,最终构建出在成本、速度和可靠性之间取得平衡的智能系统。这种资源感知能力是构建可持续、弹性AI系统的重要基础。原创 2026-01-24 12:19:44 · 837 阅读 · 0 评论 -
AI Agent 设计模式系列(十五)—— A2A Agent 间通信模式
摘要:Google A2A协议是一种开放标准,旨在解决不同AI智能体框架间的互操作性问题。该协议通过基于HTTP的通信机制,使LangGraph、CrewAI等框架构建的智能体能够协作完成任务。核心组件包括Agent卡片(JSON格式的数字身份文件)、四种交互模式(同步/异步/流式/推送)以及完善的安全机制(TLS加密和审计日志)。A2A支持复杂工作流编排,如数据收集→分析→报告生成的自动化流程,已在企业环境中得到应用。与MCP协议形成互补关系,A2A专注于智能体间协调,而MCP处理模型上下文管理。该协议已原创 2026-01-23 22:20:24 · 988 阅读 · 0 评论 -
AI Agent 设计模式系列(十四)—— 知识检索(RAG)模式
检索增强生成(RAG)技术通过将大型语言模型(LLM)与外部知识源连接,解决了LLM依赖静态训练数据的根本局限。RAG采用“检索-增强-生成”流程:首先语义检索相关信息,然后将检索结果作为上下文注入用户问题,最终生成基于事实的回答。该技术显著降低了模型“幻觉”风险,并能利用专有信息,同时提供引用来源增强可信度。RAG正在向智能体化RAG和GraphRAG等高级形态演进,可处理复杂问题并执行多步骤查询。从企业知识问答到个性化推荐,RAG正在重塑多个行业的AI应用,使LL原创 2026-01-23 21:36:56 · 1117 阅读 · 0 评论 -
AI Agent 设计模式系列(十三)—— 人机协同模式
人机协同模式是AI系统设计的关键框架,通过融合人类认知能力与AI计算优势,在复杂决策场景中实现互补增效。该模式强调人类监督的必要性,尤其在涉及伦理、安全或模糊信息的领域,AI需与人类形成"增强智能"的协作关系。典型应用包括内容审核、金融风控和客户支持等场景,AI处理常规任务,人类负责边界判断和关键决策。实现方式多样,从人工验证到共同决策,核心是保持人类对系统的最终控制权。尽管存在扩展性和专业依赖等挑战,人机协同仍是当前平衡AI效率与安全可靠性的最佳实践方案。原创 2026-01-21 22:51:24 · 1026 阅读 · 0 评论 -
AI Agent 设计模式系列(十二)—— 异常处理和恢复模式
摘要:AI智能体的异常处理与恢复模式是确保其在复杂现实环境中稳定运行的关键设计。该模式通过系统化的错误检测、处理与恢复机制(包括自动重试、回退方案和状态回滚等),使智能体具备应对意外故障的能力。实际应用表明,这种设计能显著提升系统的容错性、服务连续性和用户体验,将AI从脆弱系统转变为具备韧性的可靠智能体。该模式与反思机制协同使用,通过闭环管理实现从异常识别到恢复的全流程自动化,是构建可信AI系统的核心支柱。(149字)原创 2026-01-21 20:52:00 · 808 阅读 · 0 评论 -
LangChain4j系列(三)应用快速体验:集成 DeepSeek 大模型
本文介绍了如何在Java项目中集成DeepSeek大模型。首先通过克隆LangChain4j官方示例项目搭建开发环境,然后添加Maven依赖,利用DeepSeek兼容OpenAI API的特性进行集成。提供了完整的示例代码,包括环境变量配置、模型初始化、简单对话和流式响应实现。还介绍了SpringBoot集成方法和常见问题排查技巧。通过本教程,开发者可以快速实现LangChain4j与DeepSeek的集成,并在此基础上探索更高级的AI功能,如工具调用、RAG等。原创 2026-01-20 21:10:08 · 965 阅读 · 0 评论 -
AI Agent 设计模式系列(十一)—— 目标设定和监控模式
在 AI Agent 的上下文中,规划通常涉及 Agent 接受高级目标,并自主或半自主地生成一系列中间步骤或子目标。这些步骤可以按顺序执行,或以更复杂的流程执行,可能涉及其他模式,如工具使用、路由或多 Agent 协作。规划机制可能涉及复杂的搜索算法、逻辑推理,或越来越多地利用大型语言模型(LLM)的能力,根 据其训练数据和对任务的理解生成合理且有效的计划。良好的规划能力使 Agent 能够处理非简单的单步查询问题。它使 Agent 能够处理多方面的请求,通过重新规 划适应不断变化的情况,并编排复杂的原创 2026-01-20 20:39:15 · 1116 阅读 · 0 评论 -
LangChain4j系列(一)—— LangChain4j介绍
LangChain4j是专为Java开发者设计的LLM集成框架,提供模块化组件简化AI应用开发。核心功能包括:统一模型接口、提示词管理、文档处理、向量存储、RAG实现、记忆机制和工具调用等。特点包括Java原生支持、类型安全、模块化设计和SpringBoot集成。学习路径建议从官方示例入手,掌握核心概念后实践RAG项目,再探索高级功能。该框架显著降低Java生态中AI集成的复杂度,是构建企业级LLM应用的理想选择。原创 2026-01-19 14:40:18 · 847 阅读 · 0 评论 -
LangChain4j系列(二)—— SpringBoot 整合 LangChain4j RAG 技术深度解析
本文介绍了如何在SpringBoot项目中集成LangChain4j框架实现检索增强生成(RAG)技术。RAG通过将外部知识库与大型语言模型(LLM)结合,可构建专业领域的智能问答系统。文章详细讲解了文档处理流程,包括加载、解析、分割、向量化存储到Redis向量数据库,并提供了完整的代码实现。通过SpringBoot与LangChain4j的深度整合,开发者可以快速构建企业级知识问答应用,同时获得性能优化、错误处理等最佳实践指导。这种技术组合为Java开发者将传统开发经验与AI技术结合提供了有效途径。原创 2026-01-19 14:33:43 · 708 阅读 · 0 评论 -
AI Agent 设计模式系列(九)——学习和适应模式
摘要: 本文探讨了人工智能Agent通过学习和适应机制实现自主进化的原理与应用。重点分析了强化学习(PPO)、监督学习、无监督学习及大语言模型(LLM)的少样本学习等方法如何赋能Agent的动态优化能力。以自我改进编码Agent(SICA)为例,展示了其通过迭代修改源代码实现性能提升的突破性进展,包括开发智能编辑器、AST符号定位器等工具。研究还覆盖了个性化助手、交易机器人、RAG知识库等实际应用场景,提出模块化架构设计(如子Agent和监督者机制)对管理复杂性的重要性。案例表明,结合进化算法与LLM的Al原创 2026-01-18 23:28:39 · 1077 阅读 · 0 评论 -
LangChain 1.0 VS LangGraph 1.0:智能体的选择
LangChain与LangGraph框架对比摘要 LangChain和LangGraph是AI应用开发的两种主流框架,主要区别在于: 设计理念:LangChain采用链式线性编排(LCEL),适合模块化简单流程;LangGraph基于状态机模型,支持循环图结构和持久化状态管理 适用场景:LangChain更适合快速原型开发、简单工具调用和线性工作流;LangGraph擅长处理复杂多轮对话、循环逻辑和多智能体协作 核心特性:LangGraph提供可视化执行轨迹、检查点恢复和分布式支持,适合生产环境;Lang原创 2026-01-18 12:01:03 · 987 阅读 · 0 评论 -
AI智能体设计模式系列(八)—— 记忆管理模式
本文探讨了智能Agent记忆管理系统的设计与实现。系统采用多层次架构,包含短期记忆(上下文窗口)、长期记忆(向量数据库)、经历性记忆(事件存储)、语义记忆(知识图谱)和程序性记忆(技能库)。记忆管理基于重要性评估、自动巩固、衰减机制和关联发现等智能算法,支持对话式AI、任务型Agent和推荐系统等应用场景。系统集成LangChain和LangGraph框架,兼容多种存储后端,提供接近人类记忆的认知能力,使Agent能够理解上下文、学习经验并实现个性化交互。关键技术包括记忆压缩、强化、转移和模式发现,为构建更原创 2026-01-17 13:00:22 · 1025 阅读 · 0 评论 -
大模型应用开发入门:用VSCode跑通第一个LangChain程序
本文提供了一个完整的LangChain实战入门指南,包含以下核心内容: 环境准备:详细介绍了Python安装、VSCode配置、项目目录结构创建和虚拟环境设置 基础配置:包括依赖包安装、API密钥配置和第一个LangChain程序实现 进阶功能:构建带记忆的聊天机器人、文档问答系统,并演示LangChain核心概念(模型、提示、链、记忆、代理) 开发工具:提供Jupyter Notebook交互学习环境和调试工具 项目部署:通过FastAPI创建Web API接口,并给出项目总结和学习建议 该指南采用循序渐原创 2026-01-16 10:10:49 · 1193 阅读 · 0 评论
分享