在一个由 0 和 1 组成的二维矩阵内,找到只包含 1 的最大正方形,并返回其面积。
示例:
输入:
1 0 1 0 0
1 0 1 1 1
1 1 1 1 1
1 0 0 1 0
输出: 4
动态规划:三要素
最优子结构:当判断一个为1的点所组成的最大正方形时,把他当做正方形的右下点,如果他的左,上,左上都是一个正方形的右下顶点,那么这个正方形的边长就+1
边界:边界为第一行,第一列
状态转移方程:temp数组储存这个点所组成最大正方形的边长,temp[i][j]=min(temp[i-1][j], temp[i][j], temp[i-1][j-1])
public int maximalSquare(char[][] matrix) {
int m = matrix.length;
if(m == 0) return 0;
int n = matrix[0].length;
int max = 0;
int[][] temp = new int[m][n];
//第一列
for(int i = 0; i < m; i++) {
temp[i][0] = matrix[i][0] - '0';
max = Math.max(max, temp[i][0]);
}
//第一行
for(int i = 0; i < n; i++) {
temp[0][i] = matrix[0][i] - '0';
max = Math.max(max, temp[0][i]);
}
//遍历
for(int i = 1; i < m; i++) {
for(int j = 1; j < n; j++) {
temp[i][j] = matrix[i][j] == '1' ? Math.min(temp[i-1][j-1],Math.min(temp[i-1][j], temp[i][j-1])) + 1 : 0;
max = Math.max(max, temp[i][j]);
}
}
return max * max;
}