机器学习之特征工程(Feature Engineering)

什么是特征工程?有什么用呢?

特征工程是使用专业背景知识和技巧处理数据,使得特征能在机器学习算法上发挥更好的作用的过程。

更好的特征工程意味着更强的灵活度,更好的特征意味着只需用简单模型,更好的特征意味着更好的结果。

数据清洗


特征处理

在特征处理中,主要有一下几种类型需要进行一些处理:

  • 数值型

  • 类别型

  • 时间类

  • 文本类

  • 统计类

  • 组合特征



特征处理之数值型

  • 幅度调整 

拿到获取的原始特征,为什么要对每一特征分别进行归一化呢?比如,特征A的取值范围是[-1000,1000],特征B的取值范围是[-1,1].如果使用logistic回归,w1*x1+w2*x2,因为x1的取值太大了,所以x2基本起不了作用。所以,必须进行特征的归一化,每个特征都单独进行归一化。

1.幅度调整到给定范围内,默认[0,1]

sklearn.preprocessing.MinMaxScaler(feature_range=(0, 1), copy=True)

该方法称为离差标准化,是对原始数据的线性变换,其缺陷在当有新的数据加入时,可能导致X.max和X.min的值发生改变,需要重新计算。

计算公式为:

X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))
X_scaled = X_std * (max - min) + min

其中max,min为放缩的范围。

例子:

2.标准化

sklearn.preprocessing.StandardScaler(copy=True, with_mean=True, with_std=True)

scaling,其实就是将一些变化幅度较大的特征化到[-1,1]之内。

计算公式:

X_{scaled}=\frac{X-u}{\sigma }

Xscaled = (X - 均值) / 标准差

例子:

数据标准化的方法与意义:https://blog.csdn.net/fontthrone/article/details/74067064


  •  统计值:max, min, mean, std等


  • 离散化

pandas.cut与pandas.qcut使用方法与区别:https://blog.csdn.net/cc_jjj/article/details/78878878

离散化:https://blog.csdn.net/programmer_wei/article/details/17200085

连续特征的离散化:在什么情况下将连续的特征离散化之后可以获得更好的效果?https://www.zhihu.com/question/31989952

例子:




 特征处理之类别型

  • One-hot编码/哑变量

one hot 编码及数据归一化:https://blog.csdn.net/dulingtingzi/article/details/51374487

离散型特征编码方式:one-hot与哑变量(区别):https://www.cnblogs.com/lianyingteng/p/7792693.html

sklearn.preprocessing.OneHotEncoder(n_values=None, categorical_features=None, categories=None, sparse=True, dtype=<class ‘numpy.float64’>, handle_unknown=’error’)


# https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html#sklearn.preprocessing.OneHotEncoder
pandas.get_dummies(data, prefix=None, prefix_sep='_', dummy_na=False, columns=None, sparse=False, drop_first=False, dtype=None)

# API :
# http://pandas.pydata.org/pandas-docs/stable/generated/pandas.get_dummies.html#pandas.get_dummies

​​​​​​​例子:

​​​​​​​

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值