垂直搜索

本文详细介绍了垂直搜索引擎的概念、原理及关键技术。垂直搜索引擎专注于特定领域的信息整合与搜索,通过对特定网页库进行深度处理,为用户提供更精准的信息服务。文章还探讨了搜索引擎的组成部分,包括搜索器、索引器和检索器的工作机制。
摘要由CSDN通过智能技术生成
[color=red]1.什么是垂直搜索:[/color]
垂直搜索引擎是[color=red]针对某一个特定行业的专业搜索引擎[/color], 是通用搜索引擎的细分和[color=red]延伸[/color], 是对网页库中的某类专门的信息进行一次整合, 定向分字段抽取出需要的数据进行处理后 ,再以某种形式返回给用户。
垂直搜索引擎是相对通用搜索引擎的信息量大、查询不准确、深度不够等提出来的新的搜索引擎服务模式,[color=red]通过针对某一特定领域、某一特定人群或某一特定需求提供的有一定价值的信息和相关服务[/color]。 垂直搜索引擎则显得更加专注、具体和深入。

[color=red]2.垂直搜索引擎的原理及组成[/color]
搜索引擎的主要由搜索器、索引器、检索器组成。基本原理和主要功能组件方面,垂直搜索引擎与通用搜索引擎基本相同。两者主要的区别在于Spider爬行范围和网页信息处理深度两方面。通用搜索引擎Spider爬行的范围是面向几乎所有网页,而垂直搜索只爬行跟主题相关的网页。因此,垂直搜索引擎能够比通用搜索引擎更快速的找到相关主题的信息。
搜索器(Spider):也称网络蜘蛛、网络机器人等,是搜索引擎的灵魂。它根据特定算法负责抓取网页,从抓取到的网页里采集信息,对信息进行分词,分词根据词语的特殊属性选择分词算法,并将信息与其关联的URL保存进服务器数据库。搜索器必须保证及时的发现新网页,定时的重新采集已有网页信息更新保存数据库数据。


索引器(Indexer):根据搜索器,即网络蜘蛛采集后经过分词等处理后产生的关键字(keyword),建立从关键字到网页URL(统一资源定位器)的关系索引倒排文档,即建立索引数据库。检索器的功能是根据用户输入的查询词,在索引数据库中进行查询词与索引数据库的匹配算法,然后将查询结果按相关程度排序并输出到浏览器上。


除了考虑核心的技术外,虚拟主机采用高效的算法外,必须在用户体验上下功夫如结构化的显示搜索到的结果。比如,Google所使用的Ajax(异步JavaScript)技术,用户输入查询时能够自动提示,还有Google查询后显示的数据,界面上字体等要比Baidu细致一个档次。这些细节的原因,某种程度关系到搜索引擎在市场的占有额。


[color=red]3.垂直搜索引擎的相关技术[/color]

(1)页面解析与页面显示排序
网页地址都是用URL(UniformResource Locator统一资源定位器)来表示,获取网页信息,必须找到URL,读取该URL页面的HTML、特定标签,高级的搜索引擎还能对javascript语句进行解析。这是因为许多网站直接用JavaScript构建出来,而且随着Ajax技术的流行,很多信息包含在JavaScript标签里,为了提高采集信息的准确率,提高搜索引擎的竞争力,搜索引擎必须提供JavaScript解析器。
页面排序是针对根据用户关键字,查询到的网页列表,采用何种策略将网页列表显示在用户面前,使用户最想知道的结果显示在最前面页数发生的概率最大。主要的算法有:PageRank算法、HITS算法。在排序上,有些搜索引擎(如百度),则加入收费这一方式,使排序成为搜索引擎的一大盈利模式。
(2)、数据存储及分布式技术
尽管垂直搜索引擎保存的网页数量相对通用垂直搜索引擎小很多,但是,作为一个优秀的商业垂直搜索引擎,必须在提高性能的同时减低成本,提升竞争力。可以采用数据压缩的技术对数据进行压缩存储,采用数据库技术,如索引等提高数据读取速度,可以采用分布式技术,通过多台服务器相互合作,以提高数据采集和更新速度。
(3)、网络蜘蛛的爬行策略
网络蜘蛛(Robot或Spider)的搜索策略是指当网络蜘蛛搜索到一个文档之后,下一步应该转移到哪一个文档的方法问题。目前比较常见的搜索策略有以下几种策略:(1)IP地址搜索策略。(2)深度优先搜索策略。(3)广度优先搜索策略。(4)深度-广度结合搜索策略。
(4)、中文分词技术
  在Web应用中,文本处理的速度往往是性能的关键,快速分词具有很大的现实意义。Web文本分词是Web信息处理的基础,如信息检索、摘要形成、网页过滤等都需要对Web文本进行分词处理。Web文本的正文主要是由英文和中文构成,由于英文的单词与单词之间有空格,所以不存在分词问题。而中文的每一句中词与词之间是没有空格的,因而必须采用某种技术将其分开。
  分词的方法很多,基本上分为两类:第一类是基于字符串的匹配:将汉字串与一个机器词典中的词条进行匹配,若在词典中找到某个字符串,则匹配成功。主要有正向最大匹配法、逆向最大匹配法、最少切分等方法。第二类是基于统计的方法:从概率角度出发,单字出现在词汇中联合概率是比较大的,因此当相邻的字越常出现,则越有可能是一个词。基于上述引,对处理的材料进行分析,得到相应的单字出现的概率,然后对相邻的字出现概率进行统计,若远大于单字出现的概率之和,则可能成为一个词。实际应用中,统计分词方法都是与字典结合着来使用的,这样既发挥匹配分词的切分速度快、效率高的特点,对利用了无词典结合上下文识别生词,并能消除歧义等优点。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值