暑假补课开始了呀,第一天就学了这个东东,以及有道第一次见了不会写,这次补出来了的题
题目:Monitor
因为是学校VJ上挂的题啦,所以我给链接没法访问的,你们可以直接百度这题就ok了
题意就是给定一个n*m(n*m<1e7)的二维空间
给n1次x1,y1,x2,y2表示被监控的区域的左下右上顶点坐标(可能会有覆盖区域)
给n2次x1,y1,x2,y2表示询问该区域是否被完全监控,是输出YES,否输出NO
样例
6 6
3
2 2 4 4
3 3 5 6
5 1 6 2
2
3 2 5 4
1 5 6 5
输出
YES
NO
解析,就是二维差分数组进行区间修改,然后二维差分数组的前缀和得到原数组,再修改下原数组,有值为1,无为0
然后对原数组再搞一次前缀和,求查询区间的面积如果和原数组二维前缀和相等则说明全覆盖
AC代码还有点注释
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n,m;
ios::sync_with_stdio(false);
while(cin>>n>>m){
int ditu[n+10][m+10];///平时老师是不让这么开数组的
int a1[n+10][m+10];///所以你也可以用指针
int a[n+10][m+10];
for(int i=0;i<=n;i++)
for(int j=0;j<=m;j++)
ditu[i][j]=a1[i][j]=a[i][j]=0;///初始化,因为这题是多组
int zs;
cin>>zs;
while(zs--)
{
int x1,x2,y1,y2;
cin>>x1>>y1>>x2>>y2;
ditu[x1][y1]++;
ditu[x2+1][y1]--;
ditu[x1][y2+1]--;
ditu[x2+1][y2+1]++;///二维差分数组O1复杂度区间修改
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
a1[i][j]=a1[i-1][j]+a1[i][j-1]-a1[i-1][j-1]+ditu[i][j];///得原数组
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
if(a1[i][j]!=0)
a1[i][j]=1;///修改原数组
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
a[i][j]=a[i-1][j]+a[i][j-1]-a[i-1][j-1]+a1[i][j];///得原数组前缀和
cin>>zs;
while(zs--)
{
int x1,x2,y1,y2;
cin>>x1>>y1>>x2>>y2;
if((a[x2][y2]-a[x1-1][y2]-a[x2][y1-1]+a[x1-1][y1-1])==((x2-x1+1)*(y2-y1+1)))
cout<<"YES"<<endl;///按条件判断
else
cout<<"NO"<<endl;
}
}
}