【自动控制原理】matlab 中零极点分布对三阶控制系统的影响

实验4三阶控制系统的稳定性分析

一、实目的:

1、通过学习本实验内容,学生能够掌握高阶控制系统时域分析稳定性的方法;

2、了解劳斯稳定判据的应用。

二、实验步骤:

1、已知三阶系统闭环传递函数为Φ(s)=10(s+1)(s+3)/(s+4)(s^2+2s+2),

求系统闭环极点及其单位阶跃响应,读取动态性能指标,填入表4-1中。

  1. 实验代码:

num=[10,40,30];

den=[1 ,6,10,8];

G=tf(num,den);

p=pole(G)

step(G,6)

代码结果:

p =

  -4.0000 + 0.0000i

  -1.0000 + 1.0000i

  -1.0000 - 1.0000i

2、改变系统闭环极点的位置,Φ(s)=1.25(s+1)(s+3) /(s+0.5)(s^2+2s+2),将原极点s=-4改成s=-0.5,使闭环极点靠近虚轴,观察单位阶跃响应和动态性能指标变化。

2实验代码:

num=[1.25,5,3.75];

den=[1 ,2.5,3,1];

G=tf(num,den);

p=pole(G)

step(G,10)

代码结果:

p =

  -1.0000 + 1.0000i

  -1.0000 - 1.0000i

  -0.5000 + 0.0000i

3.改变系统闭环零点的位置,将原零点z=-1改成z=-2,Φ(s)=5(s+2)(s+3)/(s+4)(s^2+2s+2),观察单位阶跃响应及其动态性能指标的变化。

3实验代码:

num=[5,25,30];

den=[1 ,6,10,8];

G=tf(num,den);

p=pole(G)

step(G,6)

代码结果:

p =

  -4.0000 + 0.0000i

  -1.0000 + 1.0000i

  -1.0000 - 1.0000i

4.继续增加函数Φ(s)=20(s+0.5)(s+3)/(s+4)(s^2+2s+2),得到结果。

4实验代码:

num=[20,70,30];

den=[1 ,6,10,8];

G=tf(num,den);

p=pole(G)

step(G,6)

代码结果:

p =

  -4.0000 + 0.0000i

  -1.0000 + 1.0000i

  -1.0000 - 1.0000i

表4-1:高阶系统动态性能分析比较(▲=2%)

编号

Sys

上升时间

Ts/s

峰值时间

Tp/s

超调量

Mp%

调节时间

t/s

1

0.505

1.43

22.5

3.35

2

3.3

0

7.05

3

1.03

2.22

7.28

3.64

4

0.2

0.989

79.4

5

结论:

闭环系统极点越靠近虚轴,系统响应越慢。零点越远离虚轴,系统响应越慢。当零点靠近虚轴而极点远离虚轴时,系统响应变快。



我的其他专栏:

单片机原理

模式识别原理

数字电子技术实验

自动控制原理

模拟电子技术

数据结构

 

关注我了解更多

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FGO天下第一

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值