目录
1模糊数学概述
1.1模糊数学的产生背景
模糊数学诞生的标志:1965年美国加利福尼亚大学控制论专家L.A.Zadeh(查德)发表的文章“Fuzzy sets” 。
模糊数学(Fuzzy sets)又称模糊集合论。
1.精确数学方法及其局限性
1) 精确数学方法
忽略对象的一般特性,着重注意对象的数量、空间形式和几何形状的数学方法。
如:牛顿力学、牛顿和莱布尼茨创立的微积分学等。
2) 近代科学的特点
(1) 理论研究方面:用精确定义的概念和严格证明的定理,描述现实事物的数量关系和空间形式。
(2) 工程技术方面:用精确的实验方法和精确的测量计算,探索客观世界的规律,建立严密的理论体系。
3) 精确数学方法的局限性 现实世界中的许多现象,用精确数学方法难以解决。
例如:著名的问题之一——秃头悖论
用精确数学方法判断“秃头”:
方法:首先给出一个精确的定义,然后推理,最后结论。
定义:头发根数≤n时,判决为秃头;否则判决为不秃。
即头发根数n为判断秃与不秃的界限标准。
问题:当头发根数恰好为n+1,应判决为秃还是不秃?
推理:两种选择
(1) 承认精确方法:判定为不秃。
结论:有n根头发的是秃头,有n+1根头发的不是秃头。
(2) 承认生活常识:认为仅一根头发之差不会改变秃与不秃的
结果,即有n+1根头发者也应是秃头。
那么采用传统的逻辑推理,会得到下面的一些命题:
头发为n根者为秃头,
头发为n+1根者为秃头,
头发为n+2根者为秃头,
……
头发为n+k根者为秃头。
其中,k是一个有限整数,显然k完全可以取得很大。
结论:头发很多者为秃头。
2.模糊数学的诞生
模糊数学:有关描述和处理模糊性问题的理论和方法的学科。
模糊数学的基本概念:模糊性。
1965年查德(zadeh)发表了“模糊集合”论文后,在科学界引起了爆炸性的反映,他准确地阐述了模糊性的含义,制定了刻画模糊性的数学方法(隶属度、隶属函数、模糊集合等),为模糊数学作为一门独立的学科建立了必要的基础。
2 模糊性
2.1.模糊性的基本概念
人们在认识事物时,总是根据一定的标准对事物进行分类,有些事物可以依据某种精确的标准对它们进行界线明确的认识,有些事物根本无法找出精确的分类标准,例如 “秃头悖论”中的头发根数的界线n,实际是不存在的。
1) 清晰性:事物具有的明确的类属特性(或是或非)。
2) 模糊性:事物具有的不明确类属特性(只能区别程度、等级)。
3) 模糊性的本质:是事物类属的不确定性和对象资格程度的渐变性。
2.2与模糊性容易混淆的几个概念
1) 模糊性与近似性
① 共同点:描述上的不精确性。
② 区别:不精确性的根源和表现形式不同。
a) 近似性:问题本身有精确解,描述它时的不精确性源于认识条件的局限性和认识过程发展的不充分性。
例:薄雾中观远山。
b) 模糊性:问题本身无精确解,描述的不精确性来源于对象自身固有的性态上的不确定性。
例:观察一片秋叶。
2) 模糊性与随机性
① 共同点:不确定性。② 区别:不确定性的性质不同。
a) 模糊性:表现在质的不确定性。是由于概念外延的模糊性而呈现出的不确定性。
b) 随机性:是外在的不确定性。是由于条件不充分,导致条件与事件之间不能出现确定的因果关系,而事物本身
的性态和类属是确定的。
例:降雨量:大雨、中雨或小雨,典型的模糊性。
投掷硬币:随机性。
c) 排中律:即事件的发生和不发生必居且仅居其一,不存在第三种现象。随机性遵守排中律,模糊性不遵守,它存在着多种,甚至无数种中间现象。
3、模糊性与含混性
① 共同点:不确定性。
② 区别:a) 含混性:由信息不充分(二义性)引起,一个含混的命题即是模糊的,又是二义的。一个命题是否带有含混性与其应用对象或上下文有关。
b) 模糊性:是质的不确定性。例:命题“张三很高” :对给张三购买什么型号的衣服这个应用对象是含混的。
也是一个模糊性命题。
总之,模糊性:由本质决定。
其 它:由外界条件带来的不确定性引起。
3.模糊数学在模式识别领域的应用
模式识别从模糊数学诞生开始就是模糊技术应用研究的一个活跃领域,研究内容涉及:计算机图像识别、手书文字自动识别、癌细胞识别、白血球的识别与分类、疾病预报、各类信息的分类等。
研究方法:
* 针对一些模糊识别问题设计相应的模糊模式识别系统。
*用模糊数学对传统模式识别中的一些方法进行改进。
资料仅供学习使用
如有错误欢迎留言交流
上理考研周导师的其他专栏:
上理考研周导师了解更多