目录
微积分学的创始人:
导数思想最早由法国数学家 Ferma 在研究极值问题中提出.
英国数学家 Newton;德国数学家 Leibniz
都是描述物质运动的工具 (从微观上研究函数)
导数的概念
一、引例
二、导数的定义
三、导数的几何意义
四、函数的可导性与连续性的关系
五、单侧导数
一、 引例
1. 变速直线运动的速度
设描述质点运动位置的函数为
2. 曲线的切线斜率
瞬时速度
切线斜率
两个问题的共性:所求量为函数增量与自变量增量之比的极限 .
类似问题还有:
加速度是速度增量与时间增量之比的极限
角速度是转角增量与时间增量之比的极限
线密度
电流强度

例1,求常数的导数
例2 求幂函数的导数

例三 求正弦函数的导数
例4,求对数函数的导数
例5 证明函数不可导
三、导数的几何意义
例7,求切线方程
四、 函数的可导性与连续性的关系
五、 单侧导数
函数可导的充要条件
一、高阶导数的概念
二、高阶导数的运算法则
一、高阶导数的概念
定义
例1,求N阶导数
例2,求n阶导数例4
例5
例6
二、高阶导数的运算法则
例7
例8
内容小结
思考练习





资料仅供学习使用
如有错误欢迎留言交流
上理考研周导师的其他专栏:
上理考研周导师了解更多