【高等数学】第二章 导数与微分,高阶导数

目录

导数的概念

一、 引例

电流强度​编辑​编辑​编辑例1,求常数的导数

例2 求幂函数的导数​编辑​编辑

例三 求正弦函数的导数​编辑

例4,求对数函数的导数​编辑

例5 证明函数不可导​编辑

三、导数的几何意义​编辑

四、 函数的可导性与连续性的关系​编辑

一、高阶导数的概念​编辑

定义​编辑

例1,求N阶导数​编辑

二、高阶导数的运算法则​编辑

例7​编辑例8​编辑内容小结​编辑

思考练习​编辑​编辑​编辑​编辑​编辑​编辑


微积分学的创始人:

导数思想最早由法国数学家 Ferma 在研究极值问题中提出.

英国数学家 Newton;德国数学家 Leibniz

都是描述物质运动的工具 (从微观上研究函数)

导数的概念

一、引例

二、导数的定义

三、导数的几何意义

四、函数的可导性与连续性的关系

五、单侧导数

一、 引例

1. 变速直线运动的速度

设描述质点运动位置的函数为

2. 曲线的切线斜率

瞬时速度

切线斜率

两个问题的共性:所求量为函数增量与自变量增量之比的极限 .

类似问题还有:

加速度是速度增量与时间增量之比的极限

角速度是转角增量与时间增量之比的极限

线密度

电流强度例1,求常数的导数
例2 求幂函数的导数
例三 求正弦函数的导数
例4,求对数函数的导数
例5 证明函数不可导

三、导数的几何意义

例7,求切线方程

四、 函数的可导性与连续性的关系

五、 单侧导数

函数可导的充要条件

一、高阶导数的概念

二、高阶导数的运算法则

一、高阶导数的概念

定义
例1,求N阶导数

例2,求n阶导数例4例5

例6

二、高阶导数的运算法则

例7例8内容小结
思考练习


资料仅供学习使用

如有错误欢迎留言交流

上理考研周导师的其他专栏:

光电融合集成电路技术     电路原理

C语言       复变函数与积分变换

单片机原理

模式识别原理

数字电子技术

自动控制原理     ​​​​​​ 传感器技术

模拟电子技术

数据结构

 概率论与数理统计

高等数学

传感器检测技术

智能控制

嵌入式系统

图像处理与机器视觉

热工与工程流体力学

数字信号处理

线性代数

工程测试技术

上理考研周导师了解更多


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FGO天下第一

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值