【传感器技术】第1章 传感器技术的理论基础,有效数字,测量数字的估计和处理,误差的消除和统计处理

1.3.5 有效数字及其计算法则

    可以从两方面来理解:1)在实验与检定工作中,直接从仪器中读得的读数是有效数字,意思是说这些数字是能保证精确度的,是有意义的,这是从测量误差来理解的有效数字的含义。

也可从数字化整来理解有效数字的含义。化整以后的数字称为有效数字。

表示测量结果的数值,其位数应按测量精度书写,这样所记的数字称为“有效数字”。

1、在测量和数字计算中,

确定该用几位数字代表测量结果或计算结果,是很重要。 那种认为在一个数值中小数点后面的位数越多,或计算中保留位数越多,其精度就越高。这是错误的。

(1)小数点的位置不是决定精度的标准,仅与所用单位的大小有关。

(2)写出测量或计算结果时,应该只有末位数字是可以不确定的,其余位的数字都是正确的。

2、有效数字及其表示方法

有效数字:在表示测量值的数值中,全部有意义的数字。

如:2.3mm,2.4mm,2.5mm “0”可以是有效数字也可以不是。

如:0.0032m 不是,而30.050是

3、有效数字的化整规则

在数据处理中:

(1)若被舍去的第m位后的全部数字小于m位的单位的一半,则m位不变。

12.345化为12.3

(2)若被舍去的第m位后的全部数字大于m位的单位的一半,则m位加1。

12.353化为12.4

(3)若被舍去的第m位后的全部数字等于m位的单位的一半,则应按照化整为偶数的原则处理。

12.350 化为12.4;23.850化为23.8

4、有效数字的运算规则

(1)加法、减法运算规则

当多位不同精度的数值相加减时,运算前应先将精度高的数据化整,化整的结果应比精确度最低的数据的精确度高1位。

运算结果也应化整,其有效数字位数由参加运算的精度最低的数据的精度确定。

如:561.32,491.6,86.954,3.9462

化整为:561.32,491.6,86.95,3.95 561.32+491.6+86.95+3.95=1143.82

化整为:1143.8

(2)乘、除法运算规则

当求多个精度不同的数值的乘积或商时,运算前应将精确度高的数据化整,化整的结果应比精确度最低的数据的精确度高1位。

运算结果也应化整,其有效数字位数比原有效位数最少的数据位数相同。

1.4  测量数据的估计和处理

        从工程测量实践可知, 测量数据中含有系统误差和随机误差, 有时还会含有粗大误差。它们的性质不同, 对测量结果的影响及处理方法也不同。

        测量数据进行处理, 首先判断测量数据中是否含有粗大误差, 如有, 则必须加以剔除。

           再看数据中是否存在系统误差, 对系统误差可设法消除或加以修正。 排除系统误差和粗大误差的测量数据,利用随机误差性质进行处理。综合整理以得出合乎科学性的结果。

    一、 系统误差的通用处理方法        

1. 从误差根源上消除系统误差        

           系统误差是在一定的测量条件下, 测量值中含有固定不变或按一定规律变化的误差。系统误差不具有抵偿性。

        有效地找出系统误差的根源是减小或消除的关键,如何查找其根源, 需要对测量设备、 测量对象和测量系统作全面分析, 明确其中有无产生明显系统误差的因素, 并采取相应措施予以修正或消除。

         由于具体条件不同, 在分析查找误差根源时并无一成不变的方法, 这与测量者的经验、水平以及测量技术的发展密切相关。但我们可以从以下几个方面进行分析考虑。

      ① 所用传感器、 测量仪表或组成元件是否准确可靠。 比如传感器或仪表灵敏度不足, 仪表刻度不准确, 变换器、放大器等性能不太优良, 由这些引起的误差是常见的误差。

      ② 测量方法是否完善。 如用电压表测量电压, 电压表的内阻对测量结果有影响。

      ③ 传感器或仪表安装、调整或放置是否正确合理。例如: 没有调好仪表水平位置, 安装时仪表指针偏心等都会引起误差。

    ④ 传感器或仪表工作场所的环境条件是否符合规定条件。 例如环境、 温度、 湿度、气压等的变化也会引起误差。

    ⑤ 测量者的操作是否正确。 例如读数时的视差、 视力疲劳等都会引起系统误差。

   2. 系统误差的发现与判别        

     发现系统误差一般比较困难, 下面只介绍几种发现系统误差的一般方法。

(1) 实验对比法

这种方法是通过改变产生系统误差的条件从而进行不同条件的测量,有标准件法和标准仪器法  

     用仪表对标准件进行多次测量,测量值与标准值的差,就是就是仪表的系统误差。

      用精度等级更高一级的测量仪表测量,高精度表测量结果为相对真值,从被检表与相对真值的差可以发现系统误差。

  (2)理论分析及计算

   因测量原理或使用方法不当引入系统误差时,可以通过理论分析

    如:电压表内阻引起的误差,热电偶低端温度引起的误差。

(3) 残余误差观察法。

通过观察和分析测量数据及各测量值与全部测量数据的平均值之差(残差),残余误差的大小和符号的变化规律, 直接可以判断有无系统误差。  

(4) 准则检查法

已有多种准则供人们检验测量数据中是否含有系统误差。不过这些准则都有一定的适用范围。

马利科夫准则:适用于判断、发现和确定线性系统误差。

一组测量值X1,X2….Xn顺序排列,其相应残差v1,v2….vn  

Vi=Xi-X

是将残余误差前后各半分两组, 若“Σvi前”与“Σvi后”之差明显不为零, 则可能含有线性系统误差。

为0,不含线性误差;明显不为0,有线性误差。

 阿贝-赫尔默特准则:适合判断、发现和确定周期性误差

3. 系统误差的消除      

(1) 在测量结果中进行修正对于已知的系统误差, 可以用修正值对测量结果进行修正; 对于变值系统误差, 设法找出误差的变化规律, 用修正公式或修正曲线对测量结果进行修正; 对未知系统误差, 则按随机误差进行处理。      

(2)消除系统误差的根源在测量之前, 仔细检查仪表, 正确调整和安装; 防止外界干扰影响; 选好观测位置, 消除视差; 选择环境条件比较稳定时进行读数等。      

(3)在测量系统中采用补偿措施找出系统误差的规律, 在测量过程中自动消除系统误差。如用热电偶测量温度时, 热电偶参考端温度变化会引起系统误差, 消除此误差的办法之一是在热电偶回路中加一个冷端补偿器, 从而进行自动补偿。

(4) 实时反馈修正由于自动化测量技术及微机的应用, 可用实时反馈修正的办法来消除复杂的变化系统误差。当查明某种误差因素的变化对测量结果有明显的复杂影响时, 应尽可能找出其影响测量结果的函数关系或近似的函数关系。在测量过程中, 用传感器将这些误差因素的变化转换成某种物理量形式(一般为电量), 及时按照其函数关系, 通过计算机算出影响测量结果的误差值, 对测量结果作实时的自动修正。

例题:用电压表测量电压,示值为156V,电压表没有输入电压时,显示电压为0.5V,问测得的电压为多少?

0.5V可以认为是系统误差。 测量电压为:156-0.5=155.5V

二、 随机误差的统计处理        

       在测量中, 当系统误差已设法消除或减小到可以忽略的程度时, 如果测量数据仍有不稳定的现象, 说明存在随机误差。在等精度测量情况下, 得n个测量值x1,x2,…,xn, 设只含有随机误差δ1, δ2,…,δn。这组测量值或随机误差都是随机事件, 可以用概率数理统计的方法来研究。

   随机误差的处理任务是从随机数据中求出最接近真值的值(或称真值的最佳估计值), 对数据精密度的高低(或称可信赖的程度)进行评定并给出测量结果。

  1、随机误差的分布规律

     n个测量值x1,x2,…,xn, 设只含有随机误差δ1, δ2,…,δn    

其中δi=Xi-Xo

Xo为真值

随机误差特点:

1)有界性能:随机误差的绝对值不超过一定的界限

2)单峰性:绝对值小的随机误差比大的概率大。

3)对称性:随机误差等值而符号相反的出现的概率相等。

4)抵偿性:等精度重复测量的次数为无穷大时,随机误差的代数和为零。

 在大多数情况下, 当测量次数足够多时, 测量过程中产生的误差服从正态分布规律。分布密度函数为

  y——概率密度;

     x——测量值(随机变量);

 σ——均方根偏差(标准误差);

  L——真值(随机变量x的数学期望);

    δ——随机误差(随机变量), δ=x-L。

正态分布方程式的关系曲线为一条钟形的曲线(如图 1 - 4 所示), 说明随机变量在x=L或δ=0处的附近区域内具有最大概率。

均匀分布

随机误差有时是非正态的均匀分布。在某一区域内随机误差出现的概率处处相等,在区域外概率为零。

 2. 正态分布的随机误差的数字特征        

在实际测量时, 真值L不可能得到。但如果随机误差服从正态分布, 则算术平均值处随机误差的概率密度最大。对被测量进行等精度的n次测量, 得n个测量值x1,x2,…,xn, 它们的算术平均值为 算术平均值是诸测量值中最可信赖的, 它可以作为等精度多次测量的结果。

上述的算术平均值是反映随机误差的分布中心, 而均方根偏差则反映随机误差的分布范围。均方根偏差愈大, 测量数据的分散范围也愈大,所以均方根偏差σ可以描述测量数据和测量结果的精度。

图 为不同σ下正态分布曲线。 σ 愈小, 分布曲线愈陡峭, 说明随机变量的分散性小, 测量精度高;反之, σ愈大, 分布曲线愈平坦, 随机变量的分散性也大, 则精度也低。

  均方根偏差σ可由下式求取:

  xi——第i次测量值。        

在实际测量时, 由于真值L是无法确切知道的, 用测量值的算术平均值-代替之, 各测量值与算术平均值差值称为残余误差, 即   

   用残余误差计算的均方根偏差称为均方根偏差的估计值σs, 即(对于独立的、无系统误差的等精度测量来说,n次测量值有n个自由度,当求平均值时失去一个自由度)

    通常在有限次测量时, 算术平均值不可能等于被测量的真值L, 它也是随机变动的。设对被测量进行m组的“多次测量”, 各组所得的算术平均值,,围绕真值L有一定的分散性, 也是随机变量。算术平均值的精度可由算术平均值的均方根偏差(算术平均值标准差)来评定。 它与σs的关系如下:

   

在任意误差区间(a, b)出现的概率为

P(a≤v<b)=

  σ是正态分布的特征参数, 误差区间通常表示成σ的倍数, 如tσ。 由于随机误差分布对称性的特点, 常取对称的区间, 即

Pa=P(-tσ≤v≤+tσ)=

式中:t——置信系数;

    Pa——置信概率;

     ±tσ——误差限。

表 1 - 1  给出几个典型的t值及其相应的概率。

 表 1 - 1      t   值及其相应的概率

t

0.6745

1

1.96

2

2.58

3

4

Pa

0.5

0.6827

0.95

0.9545

0.99

0.9973

0.99994

置信度:置信区间与置信概率结合起来

随机误差在±tσ范围内出现的概率为P, 则超出的概率称为显著度, 用α表示:

       α=1-Pa

Pa与α关系见图 1 - 6。

       从表 1 - 1 可知, 当t=±1时, Pa=0.682 7, 即测量结果中随机误差出现在-σ~+σ范围内的概率为68.27%, 而|v|>σ的概率为31.73%。出现在-3σ~+3σ范围内的概率是99.73%, 因此可以认为绝对值大于3σ的误差是不可能出现的, 通常把这个误差称为极限误差σlim。按照上面分析, 测量结果可表示为

例 1 - 1有一组测量值(只有随机误差)为237.4、237.2、237.9、237.1、 238.1、 237.5、 237.4、237.6、  237.6、 237.4, 求测量结果 .

解: 将测量值列于表 1 - 2。

序号

测量值xi

残余误差vi

1

237.4

-0.12 

0.014

2

237.2

-0.32 

0.10

3

237.9

0.38 

0.14

4

237.1

-0.42

0.18

5

237.1

0.58

0.34

6

237.5

-0.02

0.00

7

237.4

-0.12

0.014

8

237.6

0.08

0.0064

9

237.6

0.08

0.0064

10

237.4

-0.12

0.014

  三、 粗大误差

           在对重复测量所得一组测量值进行数据处理之前, 首先应将具有粗大误差的可疑数据找出来加以剔除。

          绝对不能凭主观意愿对数据任意进行取舍, 而是要有一定的根据。

       原则就是要看这个可疑值的误差是否仍处于随机误差的范围之内, 是则留, 不是则弃。      

      因此要对测量数据进行必要的检验。        

     下面就常用的几种准则介绍如下:查出多个可疑测量数据时,不能将它们都作为坏值一并剔除,每次只能舍弃误差最大的那个可疑值。

    以上准则是以数据按正态分布为前提的, 当偏离正态分布, 特别是测量次数很少时, 则判断的可靠性就差。

    因此, 对粗大误差除用剔除准则外, 更重要的是要提高工作人员的技术水平和工作责任心。另外, 要保证测量条件稳定, 防止因环境条件剧烈变化而产生的突变影响。

  i

       xi

   残差

  残差平方

1

39.44

-0.196

0.038416

2

39.27

-0.366

0.133956

3

39.94

0.304

0.092416

4

39.44

-0.196

0.038416

5

38.91

-0.726

0.527076

6

39.69

0.054

0.002916

7

39.48

-0.156

0.024336

8

40.59

0.954

0.910116

9

39.78

0.144

0.020736

10

39.35

-0.286

0.081796

11

39.86

0.224

0.050176

12

39.71

0.074

0.005476

13

39.46

-0.176

0.030976

14

40.12

0.484

0.234256

15

39.39

-0.246

0.060516

16

39.76

0.124

0.015376

634.19

0.014

2.266956

39.63688

习题

一组测量值为:250.8 ,250.7,250 .4, 250.9,250.6,250.9,250.7,250.9,260.8,240.3 求测量结果。

四、 不等精度测量的权与误差        

    前面讲述的内容是等精度测量的问题。即多次重复测量得的各个测量值具有相同的精度, 可用同一个均方根偏差σ值来表征, 或者说具有相同的可信赖程度。

    严格地说来, 绝对的等精度测量是很难保证的, 但对条件差别不大的测量, 一般都当作等精度测量对待, 某些条件的变化, 如测量时温度的波动等, 只作为误差来考虑。 因此, 在一般测量实践中, 基本上都属等精度测量。          

     但在科学实验或高精度测量中, 为了提高测量的可靠性和精度, 往往在不同的测量条件下, 用不同的测量仪表, 不同的测量方法, 不同的测量次数以及不同的测量者进行测量与对比, 则认为它们是不等精度的测量。

      1. “权”的概念          

          在不等精度测量时, 对同一被测量进行m组测量, 得到m组测量列(进行多次测量的一组数据称为一测量列)的测量结果及其误差, 它们不能同等看待。 精度高的测量列具有较高的可靠性, 将这种可靠性的大小称为“权”。

     2. 加权算术平均值 

3. 加权算术平均值p的标准误差σ  p

         五、 测量数据处理中的几个问题

      1.测量误差的合成        

    一个测量系统或一个传感器都是由若干部分组成。 设各环节为x1,x2,…,xn, 系统总的输入输出关系为 y=f(x1,x2,…,xn), 而各部分又都存在测量误差。各局部误差对整个测量系统或传感器测量误差的影响就是误差的合成问题。若已知各环节的误差而求总的误差, 叫做误差的合成; 反之, 总的误差确定后, 要确定各环节具有多大误差才能保证总的误差值不超过规定值, 这一过程叫做误差的分配。

    由于随机误差和系统误差的规律和特点不同, 误差的合成与分配的处理方法也不同, 下面分别介绍。      

(1) 系统误差的合成

由前面可知, 系统总输出与各环节之间的函数关系为

  y=f(x1,x2,…,xn)            

各部分定值系统误差分别为Δx1,Δx2,…,Δxn, 因为系统误差一般均很小, 其误差可用微分来表示, 故其合成表达式为

   实际计算误差时, 是以各环节的定值系统误差Δx1,Δx2,…,Δxn代替上式中的dx1,dx2,…,dxn, 即

(2)随机误差的合成

如果a1=a2=…=an=1,则

   (3) 总合成误差

设测量系统和传感器的系统误差和随机误差均为相互独立的, 则总的合成误差ε表示为ε=Δy±σy                            

2.测量误差的分配

(1)系统误差的分配

例如利用电桥测电阻见课本P27

当电流表A电流为零时, 电桥平衡,Rx为:

所以,通常实际测量中,将R3采用标准电阻,R1和R2选择同一性质,并一致性好的电阻,也就是R1和R2误差可以抵消,测量误差只取决于R3的误差,将其采用精度高的标准电阻,使得测量误差大为降低。

六. 最小二乘法的应用        

      最小二乘法原理是一数学原理, 它在误差的数据处理中作为一种数据处理手段。 最小二乘法原理就是要获得最可信赖的测量结果, 使各测量值的残余误差平方和为最小。在等精度测量和不等精度测量中, 用算术平均值或加权算术平均值作为多次测量的结果, 因为它们符合最小二乘法原理。最小二乘法在组合测量的数据处理, 实验曲线的拟合及其它多种学科等方面, 均获得了广泛的应用。

曲线拟合

1.直线拟合

一组测量值xi.如:x1=1, y1=3.4;x2=2,y2=3.6; X3=3,y3=4.6; x4=4,y4=6.4

假设这组实验数据的 最佳拟合曲线为: Y=A+BX

2.曲线拟合

计算方法一样

      Rt=R0(1+αt+βt2)   

  式中: R0, Rt——分别为铂电阻在温度0 ℃和t ℃时的电阻值;                  

α, β——电阻温度系数。          

若在不同温度t条件下测得一系列电阻值R, 求电阻温度系数α和β。由于在测量中不可避免地引入误差, 如何求得一组最佳的或最恰当的解, 使Rt=R0(1+αt+βt2)具有最小的误差呢通常的做法是使测量次数n大于所求未知量个数m(n>m), 采用最小二乘法原理进行计算。          

为了讨论方便起见, 我们用线性函数通式表示。设X1,X2,…,Xm为待求量, Y1,Y2,…,Yn为直接测量值, 它们相应的函数关系为

      例 : 铜的电阻值R与温度t之间关系为Rt=R0(1+αt), 在不同温度下, 测定铜电阻的电阻值如下表所示。试估计0℃时的铜电阻电阻值R0和铜电阻的电阻温度系数α。

ti(℃) 

19.1

25.0

30.1

36.0

40.0

45.1

50.0

Ri(Ω) 

76.3

77.8

79.75

80.80

82.35

83.9

85.10

 解: 列出误差方程:

   Rti-R0(1+αt)=vi    (i=1,2,3, …,7)

式中: Ri是在温度ti下测得铜电阻电阻值。 



资料仅供学习使用

如有错误欢迎留言交流

金港考研周导师的其他专栏:

光电融合集成电路技术

C语言

单片机原理

模式识别原理

数字电子技术

自动控制原理传感器技术

模拟电子技术

数据结构

 概率论与数理统计

高等数学

传感器检测技术

智能控制

嵌入式系统

图像处理与机器视觉

热工与工程流体力学

数字信号处理

线性代数

工程测试技术

关注金港考研周导师了解更多

  • 24
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值