【智能控制】第八章 遗传算法

关注作者了解更多

我的其他CSDN专栏

过程控制系统

工程测试技术

虚拟仪器技术

可编程控制器

工业现场总线

数字图像处理

智能控制

传感器技术

嵌入式系统

复变函数与积分变换

单片机原理

线性代数

大学物理

热工与工程流体力学

数字信号处理

光电融合集成电路技术

电路原理

模拟电子技术

高等数学

概率论与数理统计

数据结构

C语言

模式识别原理

自动控制原理

数字电子技术

关注作者了解更多

资料来源于网络,如有侵权请联系编者

目录

8.1  遗传算法基本原理 

8.1.1 遗传算法的由来

  8.1.2 遗传算法的基本操作

 8.1.2.1  复制(Reproduction)

8.1.2.2  交叉(Crossover)

8.1.2.3 变异(Mutation)

8.1.3  遗传算法的特点

8.1.4  遗传算法的理论基础

8.2  基于遗传算法的参数辨识

8.3  基于遗传算法的控制参数优化

8.4  基于遗传算法的模糊神经网络学习方法

8.4.1  遗传神经网络结构

8.4.2  用遗传算法训练神经网络权值


  遗传算法(Genetic Algorithm,简称GA)作为一种解决复杂问题的优化搜索方法,是由美国密执安大学的John Holland教授首先提出来的(Holland,1975)。遗传算法是以达尔文的生物进化论为启发而创建的,是一种基于进化论中优胜劣汰、自然选择、适者生存和物种遗传思想的优化算法。

    遗传算法广泛应用于人工智能、机器学习、知识工程、函数优化、自动控制、模式识别、图像处理、生物工程等众多领域。目前,遗传算法正在向其他学科和领域渗透,正在形成遗传算法、神经网络和模糊控制相结合,从而构成一种新型的智能控制系统整体优化的结构形式。、

8.1  遗传算法基本原理 

8.1.1 遗传算法的由来

   GA的基本思想来源于达尔文的进化论和孟德尔的遗传学说。达尔文的进化论认为每一物种在不断的发展过程中都是越来越适应环境。物种的每个个体的基本特征被后代所继承,但后代又不完全同于父代,这些新的变化,若适应环境,则被保留下来。在某一环境中也是那些更能适应环境的个体特征能被保留下来,这就是适者生存的原理。

       遗传算法的出发点是一个简单的群体遗传算法,该模型基于如下假设:

(1)染色体(基因型)由一固定长度的字符串组成,其中的每一位具有有限数目的等位基因。

(2)群体由有限数目的基因型组成。

(3)每一基因型有一相应的适应度,表示该基因生存与复制的能力。适应度为大于零的实数,适应度越大表示生存能力越强。

  8.1.2 遗传算法的基本操作

 8.1.2.1  复制(Reproduction)

    复制(又称繁殖),是从一个旧种群中选择生命力强的个体位串(或称字符串)产生新种群的过程。或者说,复制是个体位串根据目标函数(适应度函数)拷贝自己的过程。根据位串的适应度值拷贝位串意味着,具有着较高适应度值的位串更有可能在下一代中产生一个或多个后代。显然,这个操作是模仿自然选择对象,将达尔文的适者生存理论应用于位串的复制,适应度值是该位串被复制或被淘汰的决定因素。

8.1.2.2  交叉(Crossover)

交叉是在两个基因型之间进行的,指其中部分内容进行了互换。      A = a1a2…al  和  B = b1b2…bl 若在位置i交换,则产生两个新的串    A′=a1…albi+1…bl  和  B′=b1…blai+1…al

8.1.2.3 变异(Mutation)

    若基因型中某个或某几个位置上的等位基因从一种状态跳变到另一种状态(0变为1或1变为0),则称该基因型发生了变异。其中变异的位置也是随机的。

遗传算法的基本步骤

8.1.3  遗传算法的特点

(1)GA是对问题参数的编码(染色体)进行操作,而不是参数本身。

(2)GA计算简单,便于计算机编程,功能强。

(3)GA是从问题解的串集开始搜索,而不是从单个解开始,更有利于搜索到全局最优解。

(4)GA使用对象函数值(即适应值)这一信息进行搜索,而不需导数等其它信息。

(5)GA的复制、交叉、变异这三个算子都是由概率决定的,而非确定性的。

(6)GA算法具有隐含的并行性,因而可通过大规模并行计算来提高计算速度。

(7)GA更适合大规模复杂问题的优化,但解决简单问题效率并不高。

8.1.4  遗传算法的理论基础

定义8.1  图式H的长度δ(H)是指图式第一个确定位置和最后一个确定位置之间的距离。如H=**00*1*,则δ(H)=4。

定义8.2  图式H的阶○(H)是指图式中固定串位的个数。如H=**00*1*,则○(H)=3。

    图式定理是GA算法的理论基础,它说明高适应值、长度短、阶数低的图式在后代中至少以指数增长包含该图式H的串的数目。原因在于再生使高适应值的图式复制更多的后代,而简单的交换操作不易破坏长度短、阶数低的图式,而变异概率很小,一般不会影响这些重要图式。

应用GA的几个要点 :

(1)问题编码        

问题编码就是如何将优化问题描述成串的形式,需要考虑编码方法和串长等。

(2)对象函数的确定。

对象函数用于评价各串的性能。函数优化问题可直接将函数本身作为对象函数。

(3)GA算法本身参数的确定。

种群数目、交换概率、变异概率 等。

8.2  基于遗传算法的参数辨识

    利用遗传算法建模,可同时确定模型结构及参数。对于线性模型,可同时获得系统的阶、时滞及参数值。只要将相关参数组合成相应的基因型,并定义好相应的适应度函数即可,实现起来方便。        

   这里,将模型结构及参数组成染色体串,将拟合误差转换成相应的适应度,于是系统建模问题就转化为利用遗传算法搜索最佳基因型结构问题。

利用遗传算法来辨识系统参数的主要步骤:

(1)随机产生N个二进制字符串,每一个字符串表示一组系统参数,从而形成第零代群体。

(2)将各二进制字符串译码成系统的各参数值。然后计算每一组参数的适应值。

(3)应用复制、交叉、变异算子对群体进行进化操作。

(4)重复(2)和(3)步,直至算法收敛或达到预先设定的世代数。

(5)群体中适应度最好的字符串所表示的参数就是所要辨识的系统参数。

8.3  基于遗传算法的控制参数优化

利用遗传算法进行控制器在线寻优的系统构成如图所示。

8.4  基于遗传算法的模糊神经网络学习方法

8.4.1  遗传神经网络结构

(1)参数的编码形式    

(2)三种基本算子的形式及意义    

(3)三种算子关系讨论

由此得到遗传神经网络的训练算法如下:  

  ① 根据问题,任选一组初始解;  

② 采用趋化性算法对每个网络进行多次学习;    

③ 选择部分个体进行交叉操作;    

④ 根据优化的终止条件,如果满足则结束,否则转②;

8.4.2  用遗传算法训练神经网络权值

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FGO天下第一

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值