目录
2.1 过程控制的数学模型(概念、作用)
过程的数学模型:过程特性的数学描述
为什么研究过程特性?
控制系统的控制品质主要取决于系统的特性和系统中各组成环节的特性
什么是过程特性?
系统特性—指控制系统输入输出之间的关系 环节特性—指环节本身输入输出之间的关系
过程的特性研究:
稳态:过程在输入和输出变量达到平稳状态下的行为
动态:输出变量和状态变量在输入影响下的变化过程的情况 动态特性是在稳态特性基础上的发展,稳态特性是动态特性达到平稳状态的特例。
被控过程数学模型的作用
过程数学模型,设计和实现成功的控制系统的必要基础。
从生产控制的角度来看,在被控变量与操纵变量的选择、检测点位 置的选择、控制算法设计、操作优化控制的设计等方面,无不需要 稳态数学模型的知识。
准确性与实时性之间的矛盾
超过实际需要的准确性会造成经济、人力、时间成本 —闭环控制自动消除干扰影响 实际生产过程的动态特性非常复杂 —突出主要因素、忽略次要因素 —近似处理(线性化、模型降阶处理)
没有统一标准,根据实际控制系统的情况折中而定。
2.1工业过程模型:分类
直觉模型:指系统的特性以非解析的形式直接储存在人脑中,靠人的直觉控制系统的变化。 如司机驾驶车辆、指挥官指挥战斗等。
物理模型:根据相似原理把实际过程加以缩小的复制品,或是实际过程的物理模拟。 如风洞(模拟外太空、大气层状况)、水力学模型、传热学模型、电力系统动态模拟等。
图表模型:用图形或表格形式来表现系统的特性。也叫做非参数模型。 如阶跃响应曲线、脉冲响应曲线、频率特性曲线等。(用曲线表示)
数学模型:用数学方程式或函数形式 来反映实际系统的行为特性。 如微分方程、传递函数、脉冲响应函数、状态方程、差分方程等
数学模型分类方法
按提供的实验信息分:黑箱、灰箱、白箱
按时间刻度分:连续的、离散的
按参数与输入输出关系分:线性的 、非线性的
按参数与时间的关系分:定常的 、时变的
按参数性质分:分布参数的、集中参数的
按概率角度分:确定性的、随机性的
按模型使用形式分:离线的、在线的、实时的、成批的
按输入输出个数分:单输入单输出的( SI/SO)、多输入多输出的(MI/MO)
按过程状态分:动态的、稳态的
2.1工业过程数学模型:稳态和动态
动态数学模型
被控过程的数学模型(动态特性),指过程在各输入量(包括控制量与扰动量) 作用下,其相应输出量(被控量)变量函数关系的数学表达式。
过程通道(跟踪)
被控过程输入量与输出量之间的信号联系
控制通道(施加)
控制作用与被控量之间的信号联系
扰动通道(抑制)
扰动作用与被控变量之间的信号联系
稳态数学模型
从生产控制的角度来看,在被控变量与操纵变量的选择、检测点位置的选择、 控制算法设计、操作优化控制的设计等。
建模方法
机理法建模
根据生产过程中实际发生的变化机理,写出各种有关的平衡方程。—针对白箱问题
要求
对需要建模的过程机理清楚,列写相应的物质平衡方程、能量平衡方程、动量平衡方程、相平衡方程,以及流 体流动、传热、化学反应等基本规律运动方程、物性方程等 经相应的数学处理,获得有关输入输出,或状态的数学模型,其形式通常是微分方程、差分方程、传递函数、 状态方程和输出方程等。
优点
1.充分利用已知过程知识,从事物本质认识外部特征; 2.在流程和设备的设计阶段即可求取; 3.适用范围较大,操作条件变化时仍可类推,如处理物料有所改变,只要已知其物理化学参数,仍不难计算。
缺点
1.人们无法完全掌握复杂过程中所有参数。如热换器的K值,精馏塔的塔板效率、塔板流体的汽液比值等。 2.如不经过输入/输出数据的验证,则近乎纸上谈兵,难以判断正确性。
试验法建模
根据工业过程的输入和输出的实测数据进行某种数学处理后得到的模式。—针对黑箱问题 优点和缺点,与机理法建模相反。
机理法+试验法建模
由于影响生产过程的因素较多,单纯用机理法建模较困难,一般用机理法分析的结论,指导测试结果的辨识。 —针对灰箱问题
要求
1.主体上按照机理法建模,但对其中部分参数通过实测得到。如热换器的K值,精馏塔的塔板效率等。
2.通过机理分析,把自变量适当组合,得出数学模型的函数形式。如此确定模型结构,估计参数比较容易, 使自变量数量减少。
3.由机理出发,通过计算或仿真,得到大量的输入输出数据,再用回归方法得出简化模型。
2.2 机理建模
基本原理
通过分析生产过程的内部机理,找出变量之间的关系。如物料平衡方程、能量平 衡方程、动量平衡方程、化学反应定律,电路基本定律等,从而导出对象的数学 模型。
建模依据
根据过程的内部机理,运用一些已知的定律、原理建立过程的数学模型
特点
当生产设备还处于设计阶段时就能建立其数学模型。评估方案可行性、合理性、 核算成本等。
静态物料(或能量)平衡关系
单位时间内进入对象的物料(或能量) =单位时间内从被控对象流出的物料(或者能量)
动态物料(或能量)平衡关系
单位时间内进入对象的物料(或能量)的增量-单位时间内从被控对象流出的物 料(或能量)的增量 =被控对象内物质(能量)存储量的变化率
2 有自平衡能力过程建模—单容
单容水位过程—单容自衡过程(一个储蓄容量、具有自平衡能力)
初始假设:进水阀开度为x0时,水的流入量Qi0与流出量Qo0 相等,容器中液位保持一定的高度 不变。当流入侧的阀门突 o 然增大到x0+Δx时,进到容器中的水流量阶跃式地增加为 Qi0+ΔQi,容器水位升高为h0+Δh,水箱内水位的静压力增大, 使水的流出量也增多,为Qo0+ΔQo。
根据物料平衡关系,即单位时间内贮蓄容器中水的流入量与流 出量之差应为贮蓄容器贮水的变化率:
C 为水箱横截面积,容器的容量系数,V 为容器中水的体积。
其中的 是考虑施加阶跃信号的时间起点为 。考虑初始状态后,整个输出响应为
从图可知,单容水位过程初始状态是平衡、稳定的:进水阀开 度为 ,流入水箱的水流量 与流出水箱的水流量 相等,水 在水箱中的高度 维持不变。当进水调节阀有了 的阶跃增大后, 原平衡状态被打破:进水量增加了,水位开始升高,直 至,不断升高的水位对负载阀压力逐渐增大,从而流出量也 增大 ,直至与进入的 增量相等为止,此时水箱水位在一个 新的高度再次稳定下来。这一新平衡的再次建立是依靠被控过程自 身能力实现的,所以称其具有自平衡特性
在这个例子中,输入量为阀门开度,输出量为水箱液位高度,它们的量纲不一样,所以输入量与输出量 可以不为同一物理量。另外,本例中 K 实际上并不是一个常数,它会随负载的变化而变化,但在较小的变 化下,可视为常数(尤其是对线性系统)
(4)容量C 被控对象储存能力的大小称为容量或容量系数,它与生产设备或传输管道贮存物质或能 量的能力有关,本例指水箱横截面积大小。从当流入容器的水与流出容器的水相等时,不会引起容量变化。 只有流入量和流出量不等时,容量才变化。所以,容量是一个动态参数。本例中它出现在时间常数 中: ,它的大小影响着被控量的响应速度。从直观来看,容量越大,即容器的横截面积C越大,时 间常数也越大,过程达到新平衡所需要的时间就越长。从图b)中的响应曲线 来说,它将变得越平缓, 接近稳态值 所需要的时间就越长
习题及思考题
1. 何谓被控过程及其数学模型?模型一般可分为哪几类?它与过程控制有何关系?
2. 什么是过程通道?什么是过程的控制通道和扰动通道?它们的数学模型是否相同?为什么?
3. 从阶跃响应曲线看,大多数被控过程有何特点?
4. 什么是机理分析法建模?该方法有何特点?一般可应用在何种场合?
5. 什么是自衡过程和非自衡过程? 6. 什么是单容过程和多容过程
2.3 实验建模法
通过测试或依据积累的操作数据,用数学方法回归,得出经验模型。
经验模型的建立通常要经过下列步骤:
1. 确定输入变量与输出变量。输入变量是经验方程式中的自变量,输出变量是因变量。自 变量的数目不宜太多。
2. 进行测试。理论上有很多实验设计方法,如正交设计等。在实施上可能会遇到选取变化 区域困难。有一种解决办法是吸收调优操作的经验,即逐步向更好的操作点移动,这样 有可能一举两得,既扩大了测试的区间,又改进了工艺操作。测试中要确定稳态是否真 正建立。
3. 把数据进行回归分析或神经网络建模。
4. 检验。分为自身与交叉检验
关注作者了解更多
我的其他CSDN专栏
关注作者了解更多
资料来源于网络,如有侵权请联系编者