Description
现有一块大奶酪,它的高度为 h,它的长度和宽度我们可以认为是无限大的,奶酪中间有许多 半径相同 的球形空洞。我们可以在这块奶酪中建立空间坐标系,
在坐标系中,奶酪的下表面为z = 0,奶酪的上表面为z = h。
现在,奶酪的下表面有一只小老鼠 Jerry,它知道奶酪中所有空洞的球心所在的坐标。两相切或是相交,则 Jerry 可以从其中一个空洞跑到另一个,
现在,奶酪的下表面有一只小老鼠 Jerry,它知道奶酪中所有空洞的球心所在的坐标。两相切或是相交,则 Jerry 可以从其中一个空洞跑到另一个,
特别地,如果一个空洞与下表面相切或是相交,Jerry 则可以从奶酪下表面跑进空洞;
如果一个空洞与上表面相切或是相交,Jerry 则可以从空洞跑到奶酪上表面。
位于奶酪下表面的 Jerry 想知道,在 不破坏奶酪 的情况下,能否利用已有的空洞跑到奶酪的上表面去?
位于奶酪下表面的 Jerry 想知道,在 不破坏奶酪 的情况下,能否利用已有的空洞跑到奶酪的上表面去?
Input
每个输入文件包含多组数据。
输入文件的第一行,包含一个正整数 T,代表该输入文件中所含的数据组数。
接下来是 T 组数据,每组数据的格式如下:
第一行包含三个正整数 n,h 和 r,两个数之间以一个空格分开,分别代表奶酪中空洞的数量,奶酪的高度和空洞的半径。
接下来的 n 行,每行包含三个整数 x、y、z,两个数之间以一个空格分开,表示空洞球心坐标为(x,y,z)。
输入文件的第一行,包含一个正整数 T,代表该输入文件中所含的数据组数。
接下来是 T 组数据,每组数据的格式如下:
第一行包含三个正整数 n,h 和 r,两个数之间以一个空格分开,分别代表奶酪中空洞的数量,奶酪的高度和空洞的半径。
接下来的 n 行,每行包含三个整数 x、y、z,两个数之间以一个空格分开,表示空洞球心坐标为(x,y,z)。
Output
输出文件包含 T 行,分别对应 T 组数据的答案,如果在第 i 组数据中,Jerry 能从下表面跑到上表面,则输出“ Yes ”,如果不能,则输出“ No ”(均不包含引号)。
Solutions
深度优先搜索
代码
1 var 2 boo:boolean; 3 nm,n,h,r,d,k:longint; 4 x,y,z:array [0..1001] of longint; 5 bo:array [0..1001] of boolean; 6 procedure qsort(l,r:longint); 7 var 8 i,j,t,mid:longint; 9 begin 10 if l>r then exit; 11 i:=l; j:=r; 12 mid:=z[(l+r) div 2]; 13 repeat 14 while z[i]<mid do inc(i); 15 while z[j]>mid do dec(j); 16 if i<=j then 17 begin 18 t:=x[i]; x[i]:=x[j]; x[j]:=t; 19 t:=y[i]; y[i]:=y[j]; y[j]:=t; 20 t:=z[i]; z[i]:=z[j]; z[j]:=t; 21 inc(i); dec(j); 22 end; 23 until i>j; 24 qsort(i,r); 25 qsort(l,j); 26 end; 27 28 procedure init; 29 var 30 i:longint; 31 begin 32 fillchar(bo,sizeof(bo),true); 33 boo:=true; 34 readln(n,h,r); 35 for i:=1 to n do 36 readln(x[i],y[i],z[i]); 37 d:=r+r; 38 qsort(1,n); 39 end; 40 41 procedure search(m:longint); 42 var 43 i:longint; 44 t:real; 45 begin 46 if not boo then exit; 47 if z[m]+r>=h then 48 begin 49 boo:=false; 50 exit; 51 end; 52 bo[m]:=false; 53 for i:=1 to n do 54 if bo[i] then 55 begin 56 t:=sqrt((x[i]-x[m])*(x[i]-x[m])+(y[i]-y[m])*(y[i]-y[m])+(z[i]-z[m])*(z[i]-z[m])); 57 if t<=d then 58 search(i); 59 end; 60 end; 61 62 begin 63 readln(nm); 64 while nm>0 do 65 begin 66 init; 67 for k:=1 to n do 68 if (abs(z[k])<=r) and (bo[k]) then 69 search(k); 70 if boo then writeln('No') 71 else writeln('Yes'); 72 dec(nm); 73 end; 74 end.