03-树1 树的同构(25 分)

题目来源:中国大学MOOC-陈越、何钦铭-数据结构-2018春
作者: 陈越
单位: 浙江大学

问题描述:
给定两棵树T1和T2。如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是“同构”的。例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A、B、G的左右孩子互换后,就得到另外一棵树。而图2就不是同构的。
这里写图片描述
图1
这里写图片描述
图2
现给定两棵树,请你判断它们是否是同构的。

输入格式:
输入给出2棵二叉树树的信息。对于每棵树,首先在一行中给出一个非负整数N (≤10),即该树的结点数(此时假设结点从0到N−1编号);随后N行,第i行对应编号第i个结点,给出该结点中存储的1个英文大写字母、其左孩子结点的编号、右孩子结点的编号。如果孩子结点为空,则在相应位置上给出“-”。给出的数据间用一个空格分隔。注意:题目保证每个结点中存储的字母是不同的。
输出格式:
如果两棵树是同构的,输出“Yes”,否则输出“No”。
输入样例1(对应图1):
8
A 1 2
B 3 4
C 5 -
D - -
E 6 -
G 7 -
F - -
H - -
8
G - 4
B 7 6
F - -
A 5 1
H - -
C 0 -
D - -
E 2 -
输出样例1:
Yes
输入样例2(对应图2):
8
B 5 7
F - -
A 0 3
C 6 -
H - -
D - -
G 4 -
E 1 -
8
D 6 -
B 5 -
E - -
H - -
C 0 2
G - 3
F - -
A 1 4
输出样例2:
No

解答:
判断过程分几种情况讨论

  1. 两棵树树根均为空,返回同构
  2. 两棵树中只有一棵树树根为空,返回不同构
  3. 两棵树中树根数值不同,返回不同构
  4. 两棵树树根下左节点均为空,递归调用判断右节点
  5. 两棵树树根下左节点均不为空且相对等,递归调用判断根的左子树与根的右子树
  6. 剩余情况,递归判断A的左子树与B的右子树,递归判断A的右子树与B的左子树
#include <iostream>
#include <algorithm>
using namespace std;

const int maxn=10;
struct node
{
    char letter;
    int leftChild;
    int rightChild;
};
node treeA[maxn];
node treeB[maxn];
bool ishead[maxn];
int N;

int buildTree(node *tree)
{
    cin>>N;
    int treeHead=-1;
    char childInfo;
    fill(ishead,ishead+maxn,true);
    for(int i=0;i<N;i++)
    {
        cin>>tree[i].letter;
        cin>>childInfo;
        if(childInfo!='-')
        {
            tree[i].leftChild=childInfo-'0';
            ishead[tree[i].leftChild]=false;
        }
        else
            tree[i].leftChild=-1;
        cin>>childInfo;
        if(childInfo!='-')
        {
            tree[i].rightChild=childInfo-'0';
            ishead[tree[i].rightChild]=false;
        }
        else
            tree[i].rightChild=-1;
    }
    for(int i=0;i<N;i++)
        if(ishead[i])
            treeHead=i;
    return treeHead;
}
bool isEqual(int headA,int headB)
{
    if(headA==-1&&headB==-1)
        return true;
    if(headA*headB<0)
        return false;
    if(treeA[headA].letter!=treeB[headB].letter)
        return false;
    if(treeA[headA].leftChild==-1&&treeB[headB].leftChild==-1)
        isEqual(treeA[headA].rightChild,treeB[headB].rightChild);
    if((treeA[headA].leftChild!=-1&&treeB[headB].leftChild!=-1)&&(treeA[treeA[headA].leftChild].letter==treeB[treeB[headB].leftChild].letter))
       return isEqual(treeA[headA].leftChild,treeB[headB].leftChild)&&isEqual(treeA[headA].rightChild,treeB[headB].rightChild);
    else
        return isEqual(treeA[headA].rightChild,treeB[headB].leftChild)&&isEqual(treeA[headA].leftChild,treeB[headB].rightChild);
}
int main()
{
    int headA=buildTree(treeA);
    int headB=buildTree(treeB);
    if(isEqual(headA,headB))
        cout<<"Yes"<<endl;
    else
        cout<<"No"<<endl;
    return 0;
}
阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/peterchen96/article/details/79973871
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

03-树1 树的同构(25 分)

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭