数据结构7

本文详细介绍了三种图的存储结构——邻接表、十字链表和邻接多重表,强调了它们各自在存储空间和计算出入度上的优缺点。此外,讨论了算法的重要特性,如输入、输出、有穷性、确定性和可行性,并举例说明了常见的时间复杂度。最后,简要概述了分治算法、查找算法,特别是顺序查找和二分查找的效率分析。
摘要由CSDN通过智能技术生成

邻接表: (graph2.c)

    边:

        顶点下标

        下一条边的地址

    顶点:

        数据

        指向第一条边的地址

    图:

        由顶点组成的数组

        顶点数量

    

    优点: 节约存储空间

    缺点: 计算入度麻烦

十字链表:

    专门用于存储有向图的一种方式

    边:

        弧尾下标

        弧头下标

        指向相同弧尾的下一条边

        指向相同弧头的下一条边

    顶点:

        数据

        指向第一条出度的边

        指向第一条入度的边

    图:

        由顶点组成的数组

        顶点数量

    优点: 节约空间、方便查找出入度

邻接多重表:

    专门存储无向图的一种方式

    边:

        i j 两个相互依附于该边的顶点下标

        inext 指向下一条依附于i顶点的边

        jnext 指向下一条依附于j顶点的边

    顶点:

        数据

        指向与有关的一条边

    图:

        由顶点组成的数组

        顶点数量

    

算法:

    数据结构中的算法,指的是数据结构所具备的功能

    解决特定问题的方法,它是前辈们的一些优秀经验总结

    五个重要特性(了解)

        1、输入: 算法具有0个或多个输入

        2、输出: 算法至少有1个或多个输出

        3、有穷性: 算法在有限的步骤之后会自动结束而不会无限循环,并且每一个步骤可以在可接受的时间内完成

        4、确定性: 算法中的每一步都有确定的含义,不会出现二义性

        5、可行性: 算法的每一步都是可行的,也就是说每一步都能够执行有限的次数

    如何评价一个算法:

        时间复杂度: 由于计算机的性能不同,无法准确地统计出某个算法执行所需要的时间,所以我们使用算法执行的次数来代表算法的时间复杂度

            O(频次) 一般忽略影响不大的常数

            常见的时间复杂度:

                //O(1)

                printf("%d",i);

                //O(logn)

                for(int i = n;i >= 0;i /= 2)

                {}

                //O(n)

                for(int i = 0;i < n;i++)

                {}

                //O(nlogn)

                for(int i = 0;i < n;i++)

                {

                    for(int j = n;j > 0;j /= 2)

                    {}

                }

                //O(n^2)

                for(int i = 0;i < n;i++)

                {

                    for(int j = 0;j < n;j++)

                    {}

                }

    算法的分类:          

        分治:

            把一个大而复杂的问题分解成很多相同的小而简单的问题,利用计算机强大的计算能力来解决小问题,从而最终解决大问题

            实现分治的方法: 循环、递归

            注意: 能用循环解决的问题就不要用递归

        查找算法: (search.c)

            顺序查找:

                对待查找的数据没有要求,从头到尾逐一比较适合在小规模数据中使用,效率较低

                时间复杂度: O(n)

            二分查找:

                待查找的数据(key)必须有序,从数据中间的位置开始比较,如果中间值比key小,则从右边部分的中间值继续比较,反之从左边比较,直到出结果为止

                时间复杂度: O(logn)

            块查找(想法大于实现):

                是一种处理数据的思想,不是一种特定的算法

                当数据量特别多时,可以先把数据进行分块处理,然后再根据块条件进行查找,例如英文字典

            哈希查找:

                数据通过哈希函数计算出数据在哈希表中的位置并进行标记以方便之后查找,它的时间复杂度最好能到O(1)

                该算法有很大的局限性,不适合浮点型、字符串数据,需要额外的存储空间,空间复杂度高,是一种典型的用空间换时间的算法

                哈希函数的设计方法:

                    直接定址法: 把数据直接当做数组的下标

                    数据分析法: 分析数据的特点来设计哈希函数,常用的方法是找到最大最小值,用 最大值-最小值+1 来确定哈希表的长度,用(数据-最小值)来访问哈希表

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值