今天在leetcode上面碰到了在O(1)时间解决数根问题,后来发现运用数学公式确实可以在常数时间内解决。
For base b (decimal case b = 10), the digit root of an integer is:
- dr(n) = 0 if n == 0
- dr(n) = (b-1) if n != 0 and n % (b-1) == 0
- dr(n) = n mod (b-1) if n % (b-1) != 0
or
- dr(n) = 1 + (n - 1) % 9
Note here, when n = 0, since (n - 1) % 9 = -1, the return value is zero (correct).
推导过程:参考 http://blog.csdn.net/ray0354315/article/details/53991199 推导:假定十进制数n,表达式写为
x=∑i=0n−1ai10i
其中 ai 表示从低到高的每一位,因为 10i≡1i≡1(mod9) ,那么
x≡∑i=0n−1ai(mod9)
也就是说
一个数和他各位数之和的模9同余
我们使
f(x)=∑i=0n−1ai
也就是
f(x)≡x(mod9)
则有
f(f(x))≡f(x)≡x(mod9)
就是说每次累加模9的操作对于原数直接取模9是一样的,但只适用于 x≢0(mod9)
完整的公式为
dr(n)=⎧⎩⎨⎪⎪⎪⎪⎪⎪0,9,nmod9,if n=0if n≠0,n≡0(mod9)if n≢0(mod9)
最后推导出
digital root = 1 + ((num - 1) % 9)