- 博客(4)
- 收藏
- 关注
原创 doris重导
当某个 Tablet 的数据出现损坏或丢失时,可以通过分片重导恢复该 Tablet 的数据。:可以精确控制每个 Tablet 的重导操作,适合细粒度的数据恢复或迁移。:适合处理大范围的数据恢复或迁移,尤其是在分区策略合理的情况下,效率较高。:由于分区是逻辑上的数据划分,范围重导可以快速恢复或迁移整个分区的数据。当某个分区的数据出现损坏或丢失时,可以通过范围重导恢复该分区的数据。在实际使用中,应根据数据损坏或迁移的具体需求,选择合适的重导机制。:以 Tablet 为单位,适合处理小范围的数据。
2025-03-20 19:54:35
364
原创 Elasticsearch介绍
Elasticsearch 是一个强大的分布式搜索和分析引擎,适合全文搜索、日志分析和实时数据处理。尽管在资源消耗和数据一致性方面存在一些局限性,但其高性能和灵活性使其成为大数据搜索和分析的首选工具之一。它以其强大的全文搜索能力、实时数据处理和分布式架构著称,广泛应用于日志分析、全文搜索、实时数据分析等场景。:索引中的基本数据单元(如 JSON 对象)。:基于 Lucene,支持复杂查询和分词。:支持水平扩展,数据分片存储,高可用。:支持结构化、非结构化和半结构化数据。:索引的分区,支持分布式存储。
2025-03-18 20:29:41
228
原创 clickhouse介绍
它以极快的查询速度、高效的列式存储和强大的分布式能力著称,适合大数据分析、实时报表和日志处理等场景。分布式查询通过分布式表(Distributed Table)实现,用户只需查询分布式表,ClickHouse 会自动将查询分发到各个分片。它以极高的查询性能和处理大规模数据的能力著称,广泛应用于大数据分析、实时报表和日志处理等场景。ClickHouse 的查询性能极佳,能够在秒级甚至毫秒级完成对数十亿行数据的查询。ClickHouse 能够高效存储和查询日志数据,适合日志处理场景。
2025-03-18 20:26:14
959
原创 Lambda和kappa架构的差异
Kappa 架构是对 Lambda 架构的简化,旨在通过单一的流处理系统实现实时数据处理,避免维护两套独立的处理逻辑。所有数据(包括历史数据和实时数据)通过消息队列(如 Apache Kafka)摄入。处理后的数据存储在实时数据库或数据湖中(如 Apache Druid、Hudi)。电商平台:需要同时分析历史订单数据(批处理)和实时用户行为数据(流处理)。金融风控:需要同时分析历史交易数据(批处理)和实时交易数据(流处理)。:需要维护两套独立的处理逻辑(批处理和流处理)。
2025-03-18 20:10:48
976
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人