LeetCode--204. 计数质数

统计所有小于非负整数 n 的质数的数量。


示例 1:
输入:n = 10
输出:4
解释:小于 10 的质数一共有 4 个, 它们是 2, 3, 5, 7 。

示例 2:
输入:n = 0
输出:0

示例 3:
输入:n = 1
输出:0

提示:
0 <= n <= 5 * 106


来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/count-primes

题解1:
  最最最基础的解法,时间复杂度贼高。。。

public int countPrimes(int n) {
        int res = 0;
        for(int i = 2;i<n;i++){
            int j = 2;
            int temp = (int)Math.sqrt(i);
            for(;j<=temp;++j)
                if(i%j ==0)
                  break;
            if(j>temp)
               ++res;
        }
        return res;
    }

题解2:
  判断质数有一个经典的方法:厄拉多塞筛法
说明: 西元前250年,希腊数学家厄拉多塞(Eeatosthese)想到了一个非常美妙的质数筛法,减少了逐一检查每个数的的步骤,可以比较简单的从一大堆数字之中,筛选出质数来,这方法被称作厄拉多塞筛法(Sieve of Eeatosthese)。
具体操作:先将 2~n 的各个数放入表中,然后在2的上面画一个圆圈,然后划去2的其他倍数;第一个既未画圈又没有被划去的数是3,将它画圈,再划去3的其他倍数;现在既未画圈又没有被划去的第一个数 是5,将它画圈,并划去5的其他倍数……依次类推,一直到所有小于或等于 n 的各数都画了圈或划去为止。这时,表中画了圈的以及未划去的那些数正好就是小于 n 的素数。

优化: 若当前质数x的平方已经大于n了,则不用继续往x后面遍历了,x后面的数都已经是质数了。

 public int countPrimes(int n) {
       int[] data = new int[n];
        for(int i=2;i<n;++i)
            data[i] = i;
        for(int i=2;i<n;++i){
            if(data[i]!=0){
                if(data[i]*data[i]>=n)
                    break;
                int temp = 2;
                while(temp*i<n){
                    data[temp*i] = 0;
                    ++temp;
                }
            }
        }
        int res = 0;
        for(int i=2;i<n;++i)
            if(data[i]!=0)
                ++res;
         return res;   
    }

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值