统计所有小于非负整数 n 的质数的数量。
示例 1:
输入:n = 10
输出:4
解释:小于 10 的质数一共有 4 个, 它们是 2, 3, 5, 7 。
示例 2:
输入:n = 0
输出:0
示例 3:
输入:n = 1
输出:0
提示:
0 <= n <= 5 * 106
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/count-primes
题解1:
最最最基础的解法,时间复杂度贼高。。。
public int countPrimes(int n) {
int res = 0;
for(int i = 2;i<n;i++){
int j = 2;
int temp = (int)Math.sqrt(i);
for(;j<=temp;++j)
if(i%j ==0)
break;
if(j>temp)
++res;
}
return res;
}
题解2:
判断质数有一个经典的方法:厄拉多塞筛法
说明: 西元前250年,希腊数学家厄拉多塞(Eeatosthese)想到了一个非常美妙的质数筛法,减少了逐一检查每个数的的步骤,可以比较简单的从一大堆数字之中,筛选出质数来,这方法被称作厄拉多塞筛法(Sieve of Eeatosthese)。
具体操作:先将 2~n 的各个数放入表中,然后在2的上面画一个圆圈,然后划去2的其他倍数;第一个既未画圈又没有被划去的数是3,将它画圈,再划去3的其他倍数;现在既未画圈又没有被划去的第一个数 是5,将它画圈,并划去5的其他倍数……依次类推,一直到所有小于或等于 n 的各数都画了圈或划去为止。这时,表中画了圈的以及未划去的那些数正好就是小于 n 的素数。
优化: 若当前质数x的平方已经大于n了,则不用继续往x后面遍历了,x后面的数都已经是质数了。
public int countPrimes(int n) {
int[] data = new int[n];
for(int i=2;i<n;++i)
data[i] = i;
for(int i=2;i<n;++i){
if(data[i]!=0){
if(data[i]*data[i]>=n)
break;
int temp = 2;
while(temp*i<n){
data[temp*i] = 0;
++temp;
}
}
}
int res = 0;
for(int i=2;i<n;++i)
if(data[i]!=0)
++res;
return res;
}