Large scale optimization

本文探讨了在大规模线性规划问题中,如何处理变量和约束条件数量巨大的情况。介绍了延迟列生成方法,特别是针对检验数最小化的优化问题(6.1),并讨论了该问题在下料问题(Cutting Stock Problem)中的应用。文章还介绍了延迟列生成的一个变种,涉及保留列的策略,以及不同变体的选择和终止条件。
摘要由CSDN通过智能技术生成

背景:在之前遇见的线性规划问题中,给出的约束条件和变量虽然比较ugly, 但都是在可以接受的,起码我们一眼能看完,但是实际运用中,给的变量和约束条件的数量往往是巨大的。如果碰到的问题里变量和约束条件数量都很大的话,两手一摊只能放弃,如果只是变量或者是约束条件一方很大的话,我们可以想办法解决。

6.1Delayed cloumn generation

考虑到标准形问题
min c’x
s.t. Ax = B ,x 0
其中变量x Rn ,限额系数b Rm ,mxn矩阵A通常是行线性无关。假设列的数量十分巨大,矩阵A无法生成且储存。从过往解决大问题的经验中推断,有些没用到的列并不需要生成。这和修正后的单纯型法(Revised Simplex Method)类似,在每次迭代中,只需要当前的列向量和将要进基的列向量。在这里有一个难点需要提出来,我们需要一个方法找到负检验数 ci¯¯¯ 相对应的变量 xi ,而不需要找到所有的列。有时候,这可以被这个问题转化为一下问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值