[蓝桥杯 2013 国 C] 危险系数
题目背景
抗日战争时期,冀中平原的地道战曾发挥重要作用。
题目描述
地道的多个站点间有通道连接,形成了庞大的网络。但也有隐患,当敌人发现了某个站点后,其它站点间可能因此会失去联系。
我们来定义一个危险系数 D F ( x , y ) DF(x,y) DF(x,y):
对于两个站点 x x x 和 y ( x ≠ y ) , y(x\neq y), y(x=y), 如果能找到一个站点 z z z,当 z z z 被敌人破坏后, x x x 和 y y y 不连通,那么我们称 z z z 为关于 x , y x,y x,y 的关键点。相应的,对于任意一对站点 x x x 和 y y y,危险系数 D F ( x , y ) DF(x,y) DF(x,y) 就表示为这两点之间的关键点个数。
本题的任务是:已知网络结构,求两站点之间的危险系数。
输入格式
输入数据第一行包含 2 2 2 个整数 n ( 2 ≤ n ≤ 1000 ) n(2 \le n \le 1000) n(2≤n≤1000), m ( 0 ≤ m ≤ 2000 ) m(0 \le m \le 2000) m(0≤m≤2000),分别代表站点数,通道数。
接下来 m m m 行,每行两个整数 u , v ( 1 ≤ u , v ≤ n , u ≠ v ) u,v(1 \le u,v \le n,u\neq v) u,v(1≤u,v≤n,u=v) 代表一条通道。
最后 1 1 1 行,两个数 u , v u,v u,v,代表询问两点之间的危险系数 D F ( u , v ) DF(u,v) DF(u,v)。
输出格式
一个整数,如果询问的两点不连通则输出 − 1 -1 −1。
样例 #1
样例输入 #1
7 6
1 3
2 3
3 4
3 5
4 5
5 6
1 6
样例输出 #1
2
提示
时限 1 秒, 64M。蓝桥杯 2013 年第四届国赛
思路: 从起点出发,利用深度优先搜索找到所有到达终点的路径,并记录每个站点被经过的次数与路径的总数。若某个站点经过次数与总路径数相同,则说明所有路径都经过这个站点,因此这个站点是一个关键点。
代码:
#include <bits/stdc++.h>
using namespace std;
vector<int> vec[1005];
int n, m, u, v, tot = 0, vis[1005], cnt[1005];
void dfs(int st){
vis[st] = 1;
if(st == v){
tot++;
for(int i = 1; i <= n; i++){
if(vis[i]) cnt[i]++;
}
vis[st] = 0;
return;
}
for(int i = 0; i < vec[st].size(); i++){
int to = vec[st][i];
if(!vis[to]) dfs(to);
}
vis[st] = 0;
return;
}
int main(){
cin >> n >> m;
for(int i = 1; i <= m; i++){
int x, y;
cin >> x >> y;
vec[x].push_back(y), vec[y].push_back(x);
}
cin >> u >> v;
dfs(u);
int ans = 0;
for(int i = 1; i <= n; i++){
if(cnt[i] == tot) ans++;
}
if(tot == 0) cout << -1;
else cout << ans - 2;
return 0;
}